| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcvalg | Structured version Visualization version GIF version | ||
| Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9591; see tz9.1 9682.) (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tcvalg | ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴)) | |
| 2 | sseq1 3972 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 4 | 3 | abbidv 2795 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 5 | 4 | inteqd 4915 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 6 | 1, 5 | eqeq12d 2745 | . 2 ⊢ (𝑦 = 𝐴 → ((TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 7 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
| 8 | 7 | tz9.1c 9683 | . . 3 ⊢ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| 9 | df-tc 9690 | . . . 4 ⊢ TC = (𝑦 ∈ V ↦ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 10 | 9 | fvmpt2 6979 | . . 3 ⊢ ((𝑦 ∈ V ∧ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 11 | 7, 8, 10 | mp2an 692 | . 2 ⊢ (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 12 | 6, 11 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⊆ wss 3914 ∩ cint 4910 Tr wtr 5214 ‘cfv 6511 TCctc 9689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-tc 9690 |
| This theorem is referenced by: tcid 9692 tctr 9693 tcmin 9694 tc2 9695 tcsni 9696 tcss 9697 tcel 9698 tcrank 9837 |
| Copyright terms: Public domain | W3C validator |