![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcvalg | Structured version Visualization version GIF version |
Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9636; see tz9.1 9727.) (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tcvalg | ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴)) | |
2 | sseq1 4007 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
3 | 2 | anbi1d 629 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥))) |
4 | 3 | abbidv 2800 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
5 | 4 | inteqd 4955 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
6 | 1, 5 | eqeq12d 2747 | . 2 ⊢ (𝑦 = 𝐴 → ((TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
7 | vex 3477 | . . 3 ⊢ 𝑦 ∈ V | |
8 | 7 | tz9.1c 9728 | . . 3 ⊢ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
9 | df-tc 9735 | . . . 4 ⊢ TC = (𝑦 ∈ V ↦ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
10 | 9 | fvmpt2 7009 | . . 3 ⊢ ((𝑦 ∈ V ∧ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) |
11 | 7, 8, 10 | mp2an 689 | . 2 ⊢ (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} |
12 | 6, 11 | vtoclg 3542 | 1 ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 Vcvv 3473 ⊆ wss 3948 ∩ cint 4950 Tr wtr 5265 ‘cfv 6543 TCctc 9734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-tc 9735 |
This theorem is referenced by: tcid 9737 tctr 9738 tcmin 9739 tc2 9740 tcsni 9741 tcss 9742 tcel 9743 tcrank 9882 |
Copyright terms: Public domain | W3C validator |