MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcvalg Structured version   Visualization version   GIF version

Theorem tcvalg 9427
Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9326; see tz9.1 9418.) (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcvalg (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tcvalg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴))
2 sseq1 3942 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32anbi1d 629 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑥 ∧ Tr 𝑥) ↔ (𝐴𝑥 ∧ Tr 𝑥)))
43abbidv 2808 . . . 4 (𝑦 = 𝐴 → {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
54inteqd 4881 . . 3 (𝑦 = 𝐴 {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
61, 5eqeq12d 2754 . 2 (𝑦 = 𝐴 → ((TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
7 vex 3426 . . 3 𝑦 ∈ V
87tz9.1c 9419 . . 3 {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ∈ V
9 df-tc 9426 . . . 4 TC = (𝑦 ∈ V ↦ {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)})
109fvmpt2 6868 . . 3 ((𝑦 ∈ V ∧ {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)})
117, 8, 10mp2an 688 . 2 (TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)}
126, 11vtoclg 3495 1 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  wss 3883   cint 4876  Tr wtr 5187  cfv 6418  TCctc 9425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-tc 9426
This theorem is referenced by:  tcid  9428  tctr  9429  tcmin  9430  tc2  9431  tcsni  9432  tcss  9433  tcel  9434  tcrank  9573
  Copyright terms: Public domain W3C validator