| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcvalg | Structured version Visualization version GIF version | ||
| Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9598; see tz9.1 9689.) (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tcvalg | ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴)) | |
| 2 | sseq1 3975 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 4 | 3 | abbidv 2796 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 5 | 4 | inteqd 4918 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 6 | 1, 5 | eqeq12d 2746 | . 2 ⊢ (𝑦 = 𝐴 → ((TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 7 | vex 3454 | . . 3 ⊢ 𝑦 ∈ V | |
| 8 | 7 | tz9.1c 9690 | . . 3 ⊢ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| 9 | df-tc 9697 | . . . 4 ⊢ TC = (𝑦 ∈ V ↦ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 10 | 9 | fvmpt2 6982 | . . 3 ⊢ ((𝑦 ∈ V ∧ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 11 | 7, 8, 10 | mp2an 692 | . 2 ⊢ (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 12 | 6, 11 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ⊆ wss 3917 ∩ cint 4913 Tr wtr 5217 ‘cfv 6514 TCctc 9696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-tc 9697 |
| This theorem is referenced by: tcid 9699 tctr 9700 tcmin 9701 tc2 9702 tcsni 9703 tcss 9704 tcel 9705 tcrank 9844 |
| Copyright terms: Public domain | W3C validator |