| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcvalg | Structured version Visualization version GIF version | ||
| Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9652; see tz9.1 9743.) (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tcvalg | ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . 3 ⊢ (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴)) | |
| 2 | sseq1 3984 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥))) |
| 4 | 3 | abbidv 2801 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 5 | 4 | inteqd 4927 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 6 | 1, 5 | eqeq12d 2751 | . 2 ⊢ (𝑦 = 𝐴 → ((TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 7 | vex 3463 | . . 3 ⊢ 𝑦 ∈ V | |
| 8 | 7 | tz9.1c 9744 | . . 3 ⊢ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
| 9 | df-tc 9751 | . . . 4 ⊢ TC = (𝑦 ∈ V ↦ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 10 | 9 | fvmpt2 6997 | . . 3 ⊢ ((𝑦 ∈ V ∧ ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| 11 | 7, 8, 10 | mp2an 692 | . 2 ⊢ (TC‘𝑦) = ∩ {𝑥 ∣ (𝑦 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 12 | 6, 11 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 Vcvv 3459 ⊆ wss 3926 ∩ cint 4922 Tr wtr 5229 ‘cfv 6531 TCctc 9750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-tc 9751 |
| This theorem is referenced by: tcid 9753 tctr 9754 tcmin 9755 tc2 9756 tcsni 9757 tcss 9758 tcel 9759 tcrank 9898 |
| Copyright terms: Public domain | W3C validator |