MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcvalg Structured version   Visualization version   GIF version

Theorem tcvalg 9206
Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9127; see tz9.1 9197.) (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcvalg (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tcvalg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6659 . . 3 (𝑦 = 𝐴 → (TC‘𝑦) = (TC‘𝐴))
2 sseq1 3918 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32anbi1d 633 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑥 ∧ Tr 𝑥) ↔ (𝐴𝑥 ∧ Tr 𝑥)))
43abbidv 2823 . . . 4 (𝑦 = 𝐴 → {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
54inteqd 4844 . . 3 (𝑦 = 𝐴 {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
61, 5eqeq12d 2775 . 2 (𝑦 = 𝐴 → ((TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ↔ (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
7 vex 3414 . . 3 𝑦 ∈ V
87tz9.1c 9198 . . 3 {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ∈ V
9 df-tc 9205 . . . 4 TC = (𝑦 ∈ V ↦ {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)})
109fvmpt2 6771 . . 3 ((𝑦 ∈ V ∧ {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)} ∈ V) → (TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)})
117, 8, 10mp2an 692 . 2 (TC‘𝑦) = {𝑥 ∣ (𝑦𝑥 ∧ Tr 𝑥)}
126, 11vtoclg 3486 1 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  {cab 2736  Vcvv 3410  wss 3859   cint 4839  Tr wtr 5139  cfv 6336  TCctc 9204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460  ax-inf2 9130
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-tc 9205
This theorem is referenced by:  tcid  9207  tctr  9208  tcmin  9209  tc2  9210  tcsni  9211  tcss  9212  tcel  9213  tcrank  9339
  Copyright terms: Public domain W3C validator