MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredpo Structured version   Visualization version   GIF version

Theorem trpredpo 9414
Description: If 𝑅 partially orders 𝐴, then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredpo ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋))

Proof of Theorem trpredpo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . 3 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → 𝑋𝐴)
2 simp3 1136 . . 3 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
3 predpo 6215 . . . . 5 ((𝑅 Po 𝐴𝑋𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋)))
43ralrimiv 3106 . . . 4 ((𝑅 Po 𝐴𝑋𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋))
543adant3 1130 . . 3 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋))
6 ssidd 3940 . . 3 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
7 trpredmintr 9409 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
81, 2, 5, 6, 7syl22anc 835 . 2 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
9 setlikespec 6217 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
10 trpredpred 9406 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ V → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
119, 10syl 17 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
12113adant1 1128 . 2 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
138, 12eqssd 3934 1 ((𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883   Po wpo 5492   Se wse 5533  Predcpred 6190  TrPredctrpred 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-trpred 9396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator