![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredpo | Structured version Visualization version GIF version |
Description: If 𝑅 partially orders 𝐴, then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
trpredpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1130 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → 𝑋 ∈ 𝐴) | |
2 | simp3 1131 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
3 | predpo 6048 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋))) | |
4 | 3 | ralrimiv 3150 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
5 | 4 | 3adant3 1125 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
6 | ssidd 3917 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
7 | trpredmintr 32681 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
8 | 1, 2, 5, 6, 7 | syl22anc 835 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
9 | setlikespec 6051 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
10 | trpredpred 32678 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ V → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
12 | 11 | 3adant1 1123 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
13 | 8, 12 | eqssd 3912 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 ⊆ wss 3865 Po wpo 5367 Se wse 5407 Predcpred 6029 TrPredctrpred 32667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-trpred 32668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |