Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredpo | Structured version Visualization version GIF version |
Description: If 𝑅 partially orders 𝐴, then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
trpredpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → 𝑋 ∈ 𝐴) | |
2 | simp3 1135 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
3 | predpo 6144 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋))) | |
4 | 3 | ralrimiv 3112 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
5 | 4 | 3adant3 1129 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
6 | ssidd 3915 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
7 | trpredmintr 33317 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
8 | 1, 2, 5, 6, 7 | syl22anc 837 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
9 | setlikespec 6147 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
10 | trpredpred 33314 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ V → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
12 | 11 | 3adant1 1127 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
13 | 8, 12 | eqssd 3909 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ⊆ wss 3858 Po wpo 5441 Se wse 5481 Predcpred 6125 TrPredctrpred 33303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-trpred 33304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |