Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredrec Structured version   Visualization version   GIF version

Theorem trpredrec 32688
Description: If 𝑌 is an 𝑅, 𝐴 transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between 𝑌 and 𝑋. (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredrec ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋   𝑧,𝑌

Proof of Theorem trpredrec
Dummy variables 𝑎 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 32676 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 nn0suc 7469 . . . 4 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
3 fveq2 6545 . . . . . . . . . . 11 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
43eleq2d 2870 . . . . . . . . . 10 (𝑖 = ∅ → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)))
54anbi2d 628 . . . . . . . . 9 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
65biimpd 230 . . . . . . . 8 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
7 setlikespec 6051 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
8 fr0g 7930 . . . . . . . . . . 11 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
97, 8syl 17 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
109eleq2d 2870 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
1110biimpa 477 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
126, 11syl6com 37 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = ∅ → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
13 fveq2 6545 . . . . . . . . . . . . 13 (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))
1413eleq2d 2870 . . . . . . . . . . . 12 (𝑖 = suc 𝑗 → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)))
1514anbi2d 628 . . . . . . . . . . 11 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
1615biimpd 230 . . . . . . . . . 10 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
17 fvex 6558 . . . . . . . . . . . . . . . . 17 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V
18 trpredlem1 32677 . . . . . . . . . . . . . . . . . . . . 21 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
197, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
2019sseld 3894 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝐴))
21 setlikespec 6051 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
2221expcom 414 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2322adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2420, 23syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2524ralrimiv 3150 . . . . . . . . . . . . . . . . 17 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
26 iunexg 7527 . . . . . . . . . . . . . . . . 17 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V ∧ ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
2717, 25, 26sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑅 Se 𝐴) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
28 nfcv 2951 . . . . . . . . . . . . . . . . 17 𝑎Pred(𝑅, 𝐴, 𝑋)
29 nfcv 2951 . . . . . . . . . . . . . . . . 17 𝑎𝑗
30 nfmpt1 5065 . . . . . . . . . . . . . . . . . . . . 21 𝑎(𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦))
3130, 28nfrdg 7909 . . . . . . . . . . . . . . . . . . . 20 𝑎rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋))
32 nfcv 2951 . . . . . . . . . . . . . . . . . . . 20 𝑎ω
3331, 32nfres 5743 . . . . . . . . . . . . . . . . . . 19 𝑎(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
3433, 29nffv 6555 . . . . . . . . . . . . . . . . . 18 𝑎((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
35 nfcv 2951 . . . . . . . . . . . . . . . . . 18 𝑎Pred(𝑅, 𝐴, 𝑧)
3634, 35nfiun 4860 . . . . . . . . . . . . . . . . 17 𝑎 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)
37 eqid 2797 . . . . . . . . . . . . . . . . 17 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
38 predeq3 6034 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3938cbviunv 4872 . . . . . . . . . . . . . . . . . 18 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧)
40 iuneq1 4846 . . . . . . . . . . . . . . . . . 18 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4139, 40syl5eq 2845 . . . . . . . . . . . . . . . . 17 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4228, 29, 36, 37, 41frsucmpt 7932 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4327, 42sylan2 592 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4443eleq2d 2870 . . . . . . . . . . . . . 14 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ↔ 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4544biimpd 230 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4645expimpd 454 . . . . . . . . . . . 12 (𝑗 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
47 eliun 4835 . . . . . . . . . . . . 13 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧))
48 ssiun2 4876 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
49 dftrpred2 32669 . . . . . . . . . . . . . . . . . 18 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
5048, 49syl6sseqr 3945 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5150sseld 3894 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋)))
52 vex 3443 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
5352elpredim 6042 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧)
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧))
5551, 54anim12d 608 . . . . . . . . . . . . . . 15 (𝑗 ∈ ω → ((𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑧)) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝑅𝑧)))
5655reximdv2 3236 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5756com12 32 . . . . . . . . . . . . 13 (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5847, 57sylbi 218 . . . . . . . . . . . 12 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5946, 58syl6com 37 . . . . . . . . . . 11 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6059pm2.43d 53 . . . . . . . . . 10 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6116, 60syl6com 37 . . . . . . . . 9 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = suc 𝑗 → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6261com23 86 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6362rexlimdv 3248 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6412, 63orim12d 959 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6564ex 413 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6665com23 86 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
672, 66syl5 34 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → (𝑖 ∈ ω → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6867rexlimdv 3248 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
691, 68syl5bi 243 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842   = wceq 1525  wcel 2083  wral 3107  wrex 3108  Vcvv 3440  wss 3865  c0 4217   ciun 4831   class class class wbr 4968  cmpt 5047   Se wse 5407  cres 5452  Predcpred 6029  suc csuc 6075  cfv 6232  ωcom 7443  reccrdg 7904  TrPredctrpred 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-trpred 32668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator