Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredrec Structured version   Visualization version   GIF version

Theorem trpredrec 33205
 Description: If 𝑌 is an 𝑅, 𝐴 transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between 𝑌 and 𝑋. (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredrec ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅   𝑧,𝑋   𝑧,𝑌

Proof of Theorem trpredrec
Dummy variables 𝑎 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 33193 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 nn0suc 7589 . . . 4 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
3 fveq2 6646 . . . . . . . . . . 11 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
43eleq2d 2875 . . . . . . . . . 10 (𝑖 = ∅ → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)))
54anbi2d 631 . . . . . . . . 9 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
65biimpd 232 . . . . . . . 8 (𝑖 = ∅ → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))))
7 setlikespec 6138 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
8 fr0g 8057 . . . . . . . . . . 11 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
97, 8syl 17 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
109eleq2d 2875 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
1110biimpa 480 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
126, 11syl6com 37 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = ∅ → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
13 fveq2 6646 . . . . . . . . . . . . 13 (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))
1413eleq2d 2875 . . . . . . . . . . . 12 (𝑖 = suc 𝑗 → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ↔ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)))
1514anbi2d 631 . . . . . . . . . . 11 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) ↔ ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
1615biimpd 232 . . . . . . . . . 10 (𝑖 = suc 𝑗 → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗))))
17 fvex 6659 . . . . . . . . . . . . . . . . 17 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V
18 trpredlem1 33194 . . . . . . . . . . . . . . . . . . . . 21 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
197, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐴)
2019sseld 3914 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝐴))
21 setlikespec 6138 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
2221expcom 417 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2322adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2420, 23syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2524ralrimiv 3148 . . . . . . . . . . . . . . . . 17 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
26 iunexg 7649 . . . . . . . . . . . . . . . . 17 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∈ V ∧ ∀𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
2717, 25, 26sylancr 590 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑅 Se 𝐴) → 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V)
28 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑎Pred(𝑅, 𝐴, 𝑋)
29 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑎𝑗
30 nfmpt1 5129 . . . . . . . . . . . . . . . . . . . . 21 𝑎(𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦))
3130, 28nfrdg 8036 . . . . . . . . . . . . . . . . . . . 20 𝑎rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋))
32 nfcv 2955 . . . . . . . . . . . . . . . . . . . 20 𝑎ω
3331, 32nfres 5821 . . . . . . . . . . . . . . . . . . 19 𝑎(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
3433, 29nffv 6656 . . . . . . . . . . . . . . . . . 18 𝑎((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
35 nfcv 2955 . . . . . . . . . . . . . . . . . 18 𝑎Pred(𝑅, 𝐴, 𝑧)
3634, 35nfiun 4912 . . . . . . . . . . . . . . . . 17 𝑎 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)
37 eqid 2798 . . . . . . . . . . . . . . . . 17 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
38 predeq3 6121 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3938cbviunv 4928 . . . . . . . . . . . . . . . . . 18 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧)
40 iuneq1 4898 . . . . . . . . . . . . . . . . . 18 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4139, 40syl5eq 2845 . . . . . . . . . . . . . . . . 17 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4228, 29, 36, 37, 41frsucmpt 8059 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4327, 42sylan2 595 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧))
4443eleq2d 2875 . . . . . . . . . . . . . 14 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ↔ 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4544biimpd 232 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ (𝑋𝐴𝑅 Se 𝐴)) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
4645expimpd 457 . . . . . . . . . . . 12 (𝑗 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → 𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧)))
47 eliun 4886 . . . . . . . . . . . . 13 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧))
48 ssiun2 4935 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
49 dftrpred2 33186 . . . . . . . . . . . . . . . . . 18 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
5048, 49sseqtrrdi 3966 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5150sseld 3914 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋)))
52 vex 3444 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
5352elpredim 6129 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧)
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ω → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → 𝑌𝑅𝑧))
5551, 54anim12d 611 . . . . . . . . . . . . . . 15 (𝑗 ∈ ω → ((𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑧)) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝑅𝑧)))
5655reximdv2 3230 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5756com12 32 . . . . . . . . . . . . 13 (∃𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)𝑌 ∈ Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5847, 57sylbi 220 . . . . . . . . . . . 12 (𝑌 𝑧 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑧) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
5946, 58syl6com 37 . . . . . . . . . . 11 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6059pm2.43d 53 . . . . . . . . . 10 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6116, 60syl6com 37 . . . . . . . . 9 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑖 = suc 𝑗 → (𝑗 ∈ ω → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6261com23 86 . . . . . . . 8 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6362rexlimdv 3242 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))
6412, 63orim12d 962 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
6564ex 416 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6665com23 86 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
672, 66syl5 34 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → (𝑖 ∈ ω → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))))
6867rexlimdv 3242 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
691, 68syl5bi 245 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  ∪ ciun 4882   class class class wbr 5031   ↦ cmpt 5111   Se wse 5477   ↾ cres 5522  Predcpred 6116  suc csuc 6162  ‘cfv 6325  ωcom 7563  reccrdg 8031  TrPredctrpred 33184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-trpred 33185 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator