![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuc1p | Structured version Visualization version GIF version |
Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | β’ π = (Poly1βπ ) |
uc1pval.b | β’ π΅ = (Baseβπ) |
uc1pval.z | β’ 0 = (0gβπ) |
uc1pval.d | β’ π· = ( deg1 βπ ) |
uc1pval.c | β’ πΆ = (Unic1pβπ ) |
uc1pval.u | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
isuc1p | β’ (πΉ β πΆ β (πΉ β π΅ β§ πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3004 | . . . 4 β’ (π = πΉ β (π β 0 β πΉ β 0 )) | |
2 | fveq2 6892 | . . . . . 6 β’ (π = πΉ β (coe1βπ) = (coe1βπΉ)) | |
3 | fveq2 6892 | . . . . . 6 β’ (π = πΉ β (π·βπ) = (π·βπΉ)) | |
4 | 2, 3 | fveq12d 6899 | . . . . 5 β’ (π = πΉ β ((coe1βπ)β(π·βπ)) = ((coe1βπΉ)β(π·βπΉ))) |
5 | 4 | eleq1d 2819 | . . . 4 β’ (π = πΉ β (((coe1βπ)β(π·βπ)) β π β ((coe1βπΉ)β(π·βπΉ)) β π)) |
6 | 1, 5 | anbi12d 632 | . . 3 β’ (π = πΉ β ((π β 0 β§ ((coe1βπ)β(π·βπ)) β π) β (πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π))) |
7 | uc1pval.p | . . . 4 β’ π = (Poly1βπ ) | |
8 | uc1pval.b | . . . 4 β’ π΅ = (Baseβπ) | |
9 | uc1pval.z | . . . 4 β’ 0 = (0gβπ) | |
10 | uc1pval.d | . . . 4 β’ π· = ( deg1 βπ ) | |
11 | uc1pval.c | . . . 4 β’ πΆ = (Unic1pβπ ) | |
12 | uc1pval.u | . . . 4 β’ π = (Unitβπ ) | |
13 | 7, 8, 9, 10, 11, 12 | uc1pval 25657 | . . 3 β’ πΆ = {π β π΅ β£ (π β 0 β§ ((coe1βπ)β(π·βπ)) β π)} |
14 | 6, 13 | elrab2 3687 | . 2 β’ (πΉ β πΆ β (πΉ β π΅ β§ (πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π))) |
15 | 3anass 1096 | . 2 β’ ((πΉ β π΅ β§ πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π) β (πΉ β π΅ β§ (πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π))) | |
16 | 14, 15 | bitr4i 278 | 1 β’ (πΉ β πΆ β (πΉ β π΅ β§ πΉ β 0 β§ ((coe1βπΉ)β(π·βπΉ)) β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 βcfv 6544 Basecbs 17144 0gc0g 17385 Unitcui 20169 Poly1cpl1 21701 coe1cco1 21702 deg1 cdg1 25569 Unic1pcuc1p 25644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 df-base 17145 df-uc1p 25649 |
This theorem is referenced by: uc1pcl 25661 uc1pn0 25663 uc1pldg 25666 mon1puc1p 25668 drnguc1p 25688 |
Copyright terms: Public domain | W3C validator |