| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isuc1p | Structured version Visualization version GIF version | ||
| Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pval.z | ⊢ 0 = (0g‘𝑃) |
| uc1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| uc1pval.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| uc1pval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| isuc1p | ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2988 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
| 4 | 2, 3 | fveq12d 6868 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| 6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
| 7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 10 | uc1pval.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | uc1pval.c | . . . 4 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 12 | uc1pval.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 13 | 7, 8, 9, 10, 11, 12 | uc1pval 26052 | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} |
| 14 | 6, 13 | elrab2 3665 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) | |
| 16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Unitcui 20271 Poly1cpl1 22068 coe1cco1 22069 deg1cdg1 25966 Unic1pcuc1p 26039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-uc1p 26044 |
| This theorem is referenced by: uc1pcl 26056 uc1pn0 26058 uc1pldg 26061 mon1puc1p 26063 drnguc1p 26086 |
| Copyright terms: Public domain | W3C validator |