MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuc1p Structured version   Visualization version   GIF version

Theorem isuc1p 26053
Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = (deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
isuc1p (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))

Proof of Theorem isuc1p
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2988 . . . 4 (𝑓 = 𝐹 → (𝑓0𝐹0 ))
2 fveq2 6861 . . . . . 6 (𝑓 = 𝐹 → (coe1𝑓) = (coe1𝐹))
3 fveq2 6861 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
42, 3fveq12d 6868 . . . . 5 (𝑓 = 𝐹 → ((coe1𝑓)‘(𝐷𝑓)) = ((coe1𝐹)‘(𝐷𝐹)))
54eleq1d 2814 . . . 4 (𝑓 = 𝐹 → (((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈 ↔ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
61, 5anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈) ↔ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
7 uc1pval.p . . . 4 𝑃 = (Poly1𝑅)
8 uc1pval.b . . . 4 𝐵 = (Base‘𝑃)
9 uc1pval.z . . . 4 0 = (0g𝑃)
10 uc1pval.d . . . 4 𝐷 = (deg1𝑅)
11 uc1pval.c . . . 4 𝐶 = (Unic1p𝑅)
12 uc1pval.u . . . 4 𝑈 = (Unit‘𝑅)
137, 8, 9, 10, 11, 12uc1pval 26052 . . 3 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
146, 13elrab2 3665 . 2 (𝐹𝐶 ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
15 3anass 1094 . 2 ((𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈) ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
1614, 15bitr4i 278 1 (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  Basecbs 17186  0gc0g 17409  Unitcui 20271  Poly1cpl1 22068  coe1cco1 22069  deg1cdg1 25966  Unic1pcuc1p 26039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-uc1p 26044
This theorem is referenced by:  uc1pcl  26056  uc1pn0  26058  uc1pldg  26061  mon1puc1p  26063  drnguc1p  26086
  Copyright terms: Public domain W3C validator