| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isuc1p | Structured version Visualization version GIF version | ||
| Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pval.z | ⊢ 0 = (0g‘𝑃) |
| uc1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| uc1pval.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| uc1pval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| isuc1p | ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2994 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
| 2 | fveq2 6876 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
| 3 | fveq2 6876 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
| 4 | 2, 3 | fveq12d 6883 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| 6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
| 7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 10 | uc1pval.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | uc1pval.c | . . . 4 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 12 | uc1pval.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 13 | 7, 8, 9, 10, 11, 12 | uc1pval 26097 | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} |
| 14 | 6, 13 | elrab2 3674 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) | |
| 16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Unitcui 20315 Poly1cpl1 22112 coe1cco1 22113 deg1cdg1 26011 Unic1pcuc1p 26084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-uc1p 26089 |
| This theorem is referenced by: uc1pcl 26101 uc1pn0 26103 uc1pldg 26106 mon1puc1p 26108 drnguc1p 26131 |
| Copyright terms: Public domain | W3C validator |