MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuc1p Structured version   Visualization version   GIF version

Theorem isuc1p 25210
Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
isuc1p (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))

Proof of Theorem isuc1p
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3005 . . . 4 (𝑓 = 𝐹 → (𝑓0𝐹0 ))
2 fveq2 6756 . . . . . 6 (𝑓 = 𝐹 → (coe1𝑓) = (coe1𝐹))
3 fveq2 6756 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
42, 3fveq12d 6763 . . . . 5 (𝑓 = 𝐹 → ((coe1𝑓)‘(𝐷𝑓)) = ((coe1𝐹)‘(𝐷𝐹)))
54eleq1d 2823 . . . 4 (𝑓 = 𝐹 → (((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈 ↔ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
61, 5anbi12d 630 . . 3 (𝑓 = 𝐹 → ((𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈) ↔ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
7 uc1pval.p . . . 4 𝑃 = (Poly1𝑅)
8 uc1pval.b . . . 4 𝐵 = (Base‘𝑃)
9 uc1pval.z . . . 4 0 = (0g𝑃)
10 uc1pval.d . . . 4 𝐷 = ( deg1𝑅)
11 uc1pval.c . . . 4 𝐶 = (Unic1p𝑅)
12 uc1pval.u . . . 4 𝑈 = (Unit‘𝑅)
137, 8, 9, 10, 11, 12uc1pval 25209 . . 3 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
146, 13elrab2 3620 . 2 (𝐹𝐶 ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
15 3anass 1093 . 2 ((𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈) ↔ (𝐹𝐵 ∧ (𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)))
1614, 15bitr4i 277 1 (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  Basecbs 16840  0gc0g 17067  Unitcui 19796  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121  Unic1pcuc1p 25196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841  df-uc1p 25201
This theorem is referenced by:  uc1pcl  25213  uc1pn0  25215  uc1pldg  25218  mon1puc1p  25220  drnguc1p  25240
  Copyright terms: Public domain W3C validator