![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuc1p | Structured version Visualization version GIF version |
Description: Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pval.z | ⊢ 0 = (0g‘𝑃) |
uc1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
uc1pval.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
uc1pval.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
isuc1p | ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2992 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
2 | fveq2 6896 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
3 | fveq2 6896 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
4 | 2, 3 | fveq12d 6903 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
5 | 4 | eleq1d 2810 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
6 | 1, 5 | anbi12d 630 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
10 | uc1pval.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | uc1pval.c | . . . 4 ⊢ 𝐶 = (Unic1p‘𝑅) | |
12 | uc1pval.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
13 | 7, 8, 9, 10, 11, 12 | uc1pval 26120 | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} |
14 | 6, 13 | elrab2 3682 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) |
15 | 3anass 1092 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈))) | |
16 | 14, 15 | bitr4i 277 | 1 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ‘cfv 6549 Basecbs 17183 0gc0g 17424 Unitcui 20306 Poly1cpl1 22119 coe1cco1 22120 deg1 cdg1 26031 Unic1pcuc1p 26107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-1cn 11198 ax-addcl 11200 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12246 df-slot 17154 df-ndx 17166 df-base 17184 df-uc1p 26112 |
This theorem is referenced by: uc1pcl 26124 uc1pn0 26126 uc1pldg 26129 mon1puc1p 26131 drnguc1p 26153 |
Copyright terms: Public domain | W3C validator |