MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Visualization version   GIF version

Theorem ulm0 26434
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z 𝑍 = (ℤ𝑀)
ulm0.m (𝜑𝑀 ∈ ℤ)
ulm0.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm0.g (𝜑𝐺:𝑆⟶ℂ)
Assertion
Ref Expression
ulm0 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)

Proof of Theorem ulm0
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 12893 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 ulm0.z . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2852 . . . . 5 (𝜑𝑀𝑍)
65ne0d 4342 . . . 4 (𝜑𝑍 ≠ ∅)
7 ral0 4513 . . . . . . 7 𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥
8 simpr 484 . . . . . . . 8 ((𝜑𝑆 = ∅) → 𝑆 = ∅)
98raleqdv 3326 . . . . . . 7 ((𝜑𝑆 = ∅) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
107, 9mpbiri 258 . . . . . 6 ((𝜑𝑆 = ∅) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1110ralrimivw 3150 . . . . 5 ((𝜑𝑆 = ∅) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1211ralrimivw 3150 . . . 4 ((𝜑𝑆 = ∅) → ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
13 r19.2z 4495 . . . 4 ((𝑍 ≠ ∅ ∧ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
146, 12, 13syl2an2r 685 . . 3 ((𝜑𝑆 = ∅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1514ralrimivw 3150 . 2 ((𝜑𝑆 = ∅) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
161adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝑀 ∈ ℤ)
17 ulm0.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1817adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
19 eqidd 2738 . . 3 (((𝜑𝑆 = ∅) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
20 eqidd 2738 . . 3 (((𝜑𝑆 = ∅) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
21 ulm0.g . . . 4 (𝜑𝐺:𝑆⟶ℂ)
2221adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐺:𝑆⟶ℂ)
23 0ex 5307 . . . 4 ∅ ∈ V
248, 23eqeltrdi 2849 . . 3 ((𝜑𝑆 = ∅) → 𝑆 ∈ V)
254, 16, 18, 19, 20, 22, 24ulm2 26428 . 2 ((𝜑𝑆 = ∅) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
2615, 25mpbird 257 1 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  c0 4333   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153   < clt 11295  cmin 11492  cz 12613  cuz 12878  +crp 13034  abscabs 15273  𝑢culm 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-ulm 26420
This theorem is referenced by:  pserulm  26465
  Copyright terms: Public domain W3C validator