| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulm0 | Structured version Visualization version GIF version | ||
| Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulm0.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm0.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm0.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm0.g | ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| Ref | Expression |
|---|---|
| ulm0 | ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12753 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | ulm0.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2844 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | 5 | ne0d 4291 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 7 | ral0 4462 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 | |
| 8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 = ∅) | |
| 9 | 8 | raleqdv 3293 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 10 | 7, 9 | mpbiri 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 11 | 10 | ralrimivw 3129 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 12 | 11 | ralrimivw 3129 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 13 | r19.2z 4444 | . . . 4 ⊢ ((𝑍 ≠ ∅ ∧ ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) | |
| 14 | 6, 12, 13 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 15 | 14 | ralrimivw 3129 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑀 ∈ ℤ) |
| 17 | ulm0.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 19 | eqidd 2734 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
| 20 | eqidd 2734 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 21 | ulm0.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐺:𝑆⟶ℂ) |
| 23 | 0ex 5247 | . . . 4 ⊢ ∅ ∈ V | |
| 24 | 8, 23 | eqeltrdi 2841 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 ∈ V) |
| 25 | 4, 16, 18, 19, 20, 22, 24 | ulm2 26322 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 26 | 15, 25 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∅c0 4282 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℂcc 11011 < clt 11153 − cmin 11351 ℤcz 12475 ℤ≥cuz 12738 ℝ+crp 12892 abscabs 15143 ⇝𝑢culm 26313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-neg 11354 df-z 12476 df-uz 12739 df-ulm 26314 |
| This theorem is referenced by: pserulm 26359 |
| Copyright terms: Public domain | W3C validator |