| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulm0 | Structured version Visualization version GIF version | ||
| Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulm0.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm0.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm0.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm0.g | ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| Ref | Expression |
|---|---|
| ulm0 | ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12744 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | ulm0.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2842 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | 5 | ne0d 4292 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 7 | ral0 4463 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 | |
| 8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 = ∅) | |
| 9 | 8 | raleqdv 3292 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 10 | 7, 9 | mpbiri 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 11 | 10 | ralrimivw 3128 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 12 | 11 | ralrimivw 3128 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 13 | r19.2z 4445 | . . . 4 ⊢ ((𝑍 ≠ ∅ ∧ ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) | |
| 14 | 6, 12, 13 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 15 | 14 | ralrimivw 3128 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑀 ∈ ℤ) |
| 17 | ulm0.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 19 | eqidd 2732 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
| 20 | eqidd 2732 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 21 | ulm0.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐺:𝑆⟶ℂ) |
| 23 | 0ex 5245 | . . . 4 ⊢ ∅ ∈ V | |
| 24 | 8, 23 | eqeltrdi 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 ∈ V) |
| 25 | 4, 16, 18, 19, 20, 22, 24 | ulm2 26319 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 26 | 15, 25 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∅c0 4283 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11001 < clt 11143 − cmin 11341 ℤcz 12465 ℤ≥cuz 12729 ℝ+crp 12887 abscabs 15138 ⇝𝑢culm 26310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-neg 11344 df-z 12466 df-uz 12730 df-ulm 26311 |
| This theorem is referenced by: pserulm 26356 |
| Copyright terms: Public domain | W3C validator |