| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulm0 | Structured version Visualization version GIF version | ||
| Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulm0.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm0.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm0.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm0.g | ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| Ref | Expression |
|---|---|
| ulm0 | ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12867 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | ulm0.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2845 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | 5 | ne0d 4317 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 7 | ral0 4488 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 | |
| 8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 = ∅) | |
| 9 | 8 | raleqdv 3305 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 10 | 7, 9 | mpbiri 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 11 | 10 | ralrimivw 3136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 12 | 11 | ralrimivw 3136 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 13 | r19.2z 4470 | . . . 4 ⊢ ((𝑍 ≠ ∅ ∧ ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) | |
| 14 | 6, 12, 13 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 15 | 14 | ralrimivw 3136 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑀 ∈ ℤ) |
| 17 | ulm0.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 19 | eqidd 2736 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
| 20 | eqidd 2736 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 21 | ulm0.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐺:𝑆⟶ℂ) |
| 23 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 24 | 8, 23 | eqeltrdi 2842 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 ∈ V) |
| 25 | 4, 16, 18, 19, 20, 22, 24 | ulm2 26346 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 26 | 15, 25 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 < clt 11269 − cmin 11466 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 abscabs 15253 ⇝𝑢culm 26337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-ulm 26338 |
| This theorem is referenced by: pserulm 26383 |
| Copyright terms: Public domain | W3C validator |