| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulm0 | Structured version Visualization version GIF version | ||
| Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulm0.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm0.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm0.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm0.g | ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| Ref | Expression |
|---|---|
| ulm0 | ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12815 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | ulm0.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2840 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | 5 | ne0d 4308 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 7 | ral0 4479 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 | |
| 8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 = ∅) | |
| 9 | 8 | raleqdv 3301 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 10 | 7, 9 | mpbiri 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 11 | 10 | ralrimivw 3130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 12 | 11 | ralrimivw 3130 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 13 | r19.2z 4461 | . . . 4 ⊢ ((𝑍 ≠ ∅ ∧ ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) | |
| 14 | 6, 12, 13 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 15 | 14 | ralrimivw 3130 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
| 16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑀 ∈ ℤ) |
| 17 | ulm0.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 19 | eqidd 2731 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
| 20 | eqidd 2731 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 21 | ulm0.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐺:𝑆⟶ℂ) |
| 23 | 0ex 5265 | . . . 4 ⊢ ∅ ∈ V | |
| 24 | 8, 23 | eqeltrdi 2837 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 ∈ V) |
| 25 | 4, 16, 18, 19, 20, 22, 24 | ulm2 26301 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 26 | 15, 25 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℂcc 11073 < clt 11215 − cmin 11412 ℤcz 12536 ℤ≥cuz 12800 ℝ+crp 12958 abscabs 15207 ⇝𝑢culm 26292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-ulm 26293 |
| This theorem is referenced by: pserulm 26338 |
| Copyright terms: Public domain | W3C validator |