![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulm0 | Structured version Visualization version GIF version |
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
Ref | Expression |
---|---|
ulm0.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulm0.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulm0.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
ulm0.g | ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
Ref | Expression |
---|---|
ulm0 | ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulm0.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzid 12891 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
4 | ulm0.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | eleqtrrdi 2850 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
6 | 5 | ne0d 4348 | . . . 4 ⊢ (𝜑 → 𝑍 ≠ ∅) |
7 | ral0 4519 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 | |
8 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 = ∅) | |
9 | 8 | raleqdv 3324 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
10 | 7, 9 | mpbiri 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
11 | 10 | ralrimivw 3148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
12 | 11 | ralrimivw 3148 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
13 | r19.2z 4501 | . . . 4 ⊢ ((𝑍 ≠ ∅ ∧ ∀𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) | |
14 | 6, 12, 13 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
15 | 14 | ralrimivw 3148 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) |
16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑀 ∈ ℤ) |
17 | ulm0.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
19 | eqidd 2736 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
20 | eqidd 2736 | . . 3 ⊢ (((𝜑 ∧ 𝑆 = ∅) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
21 | ulm0.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) | |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐺:𝑆⟶ℂ) |
23 | 0ex 5313 | . . . 4 ⊢ ∅ ∈ V | |
24 | 8, 23 | eqeltrdi 2847 | . . 3 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝑆 ∈ V) |
25 | 4, 16, 18, 19, 20, 22, 24 | ulm2 26443 | . 2 ⊢ ((𝜑 ∧ 𝑆 = ∅) → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
26 | 15, 25 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ∅c0 4339 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℂcc 11151 < clt 11293 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 ℝ+crp 13032 abscabs 15270 ⇝𝑢culm 26434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-neg 11493 df-z 12612 df-uz 12877 df-ulm 26435 |
This theorem is referenced by: pserulm 26480 |
Copyright terms: Public domain | W3C validator |