MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Visualization version   GIF version

Theorem ulm0 24486
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z 𝑍 = (ℤ𝑀)
ulm0.m (𝜑𝑀 ∈ ℤ)
ulm0.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulm0.g (𝜑𝐺:𝑆⟶ℂ)
Assertion
Ref Expression
ulm0 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)

Proof of Theorem ulm0
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2 uzid 11945 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
4 ulm0.z . . . . . . 7 𝑍 = (ℤ𝑀)
53, 4syl6eleqr 2889 . . . . . 6 (𝜑𝑀𝑍)
65ne0d 4122 . . . . 5 (𝜑𝑍 ≠ ∅)
76adantr 473 . . . 4 ((𝜑𝑆 = ∅) → 𝑍 ≠ ∅)
8 ral0 4269 . . . . . . 7 𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥
9 simpr 478 . . . . . . . 8 ((𝜑𝑆 = ∅) → 𝑆 = ∅)
109raleqdv 3327 . . . . . . 7 ((𝜑𝑆 = ∅) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
118, 10mpbiri 250 . . . . . 6 ((𝜑𝑆 = ∅) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1211ralrimivw 3148 . . . . 5 ((𝜑𝑆 = ∅) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1312ralrimivw 3148 . . . 4 ((𝜑𝑆 = ∅) → ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
14 r19.2z 4253 . . . 4 ((𝑍 ≠ ∅ ∧ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
157, 13, 14syl2anc 580 . . 3 ((𝜑𝑆 = ∅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1615ralrimivw 3148 . 2 ((𝜑𝑆 = ∅) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
171adantr 473 . . 3 ((𝜑𝑆 = ∅) → 𝑀 ∈ ℤ)
18 ulm0.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
1918adantr 473 . . 3 ((𝜑𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
20 eqidd 2800 . . 3 (((𝜑𝑆 = ∅) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
21 eqidd 2800 . . 3 (((𝜑𝑆 = ∅) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
22 ulm0.g . . . 4 (𝜑𝐺:𝑆⟶ℂ)
2322adantr 473 . . 3 ((𝜑𝑆 = ∅) → 𝐺:𝑆⟶ℂ)
24 0ex 4984 . . . 4 ∅ ∈ V
259, 24syl6eqel 2886 . . 3 ((𝜑𝑆 = ∅) → 𝑆 ∈ V)
264, 17, 19, 20, 21, 23, 25ulm2 24480 . 2 ((𝜑𝑆 = ∅) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
2716, 26mpbird 249 1 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2971  wral 3089  wrex 3090  Vcvv 3385  c0 4115   class class class wbr 4843  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  cc 10222   < clt 10363  cmin 10556  cz 11666  cuz 11930  +crp 12074  abscabs 14315  𝑢culm 24471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-neg 10559  df-z 11667  df-uz 11931  df-ulm 24472
This theorem is referenced by:  pserulm  24517
  Copyright terms: Public domain W3C validator