MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Visualization version   GIF version

Theorem ulm0 26352
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z 𝑍 = (ℤ𝑀)
ulm0.m (𝜑𝑀 ∈ ℤ)
ulm0.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm0.g (𝜑𝐺:𝑆⟶ℂ)
Assertion
Ref Expression
ulm0 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)

Proof of Theorem ulm0
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 12867 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 ulm0.z . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2845 . . . . 5 (𝜑𝑀𝑍)
65ne0d 4317 . . . 4 (𝜑𝑍 ≠ ∅)
7 ral0 4488 . . . . . . 7 𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥
8 simpr 484 . . . . . . . 8 ((𝜑𝑆 = ∅) → 𝑆 = ∅)
98raleqdv 3305 . . . . . . 7 ((𝜑𝑆 = ∅) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
107, 9mpbiri 258 . . . . . 6 ((𝜑𝑆 = ∅) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1110ralrimivw 3136 . . . . 5 ((𝜑𝑆 = ∅) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1211ralrimivw 3136 . . . 4 ((𝜑𝑆 = ∅) → ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
13 r19.2z 4470 . . . 4 ((𝑍 ≠ ∅ ∧ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
146, 12, 13syl2an2r 685 . . 3 ((𝜑𝑆 = ∅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1514ralrimivw 3136 . 2 ((𝜑𝑆 = ∅) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
161adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝑀 ∈ ℤ)
17 ulm0.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1817adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
19 eqidd 2736 . . 3 (((𝜑𝑆 = ∅) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
20 eqidd 2736 . . 3 (((𝜑𝑆 = ∅) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
21 ulm0.g . . . 4 (𝜑𝐺:𝑆⟶ℂ)
2221adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐺:𝑆⟶ℂ)
23 0ex 5277 . . . 4 ∅ ∈ V
248, 23eqeltrdi 2842 . . 3 ((𝜑𝑆 = ∅) → 𝑆 ∈ V)
254, 16, 18, 19, 20, 22, 24ulm2 26346 . 2 ((𝜑𝑆 = ∅) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
2615, 25mpbird 257 1 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  c0 4308   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127   < clt 11269  cmin 11466  cz 12588  cuz 12852  +crp 13008  abscabs 15253  𝑢culm 26337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-ulm 26338
This theorem is referenced by:  pserulm  26383
  Copyright terms: Public domain W3C validator