MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Visualization version   GIF version

Theorem ulmshft 25765
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshft (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3 𝑍 = (ℤ𝑀)
2 ulmshft.w . . 3 𝑊 = (ℤ‘(𝑀 + 𝐾))
3 ulmshft.m . . 3 (𝜑𝑀 ∈ ℤ)
4 ulmshft.k . . 3 (𝜑𝐾 ∈ ℤ)
5 ulmshft.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 ulmshft.h . . 3 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
71, 2, 3, 4, 5, 6ulmshftlem 25764 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
8 eqid 2737 . . 3 (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ‘((𝑀 + 𝐾) + -𝐾))
93, 4zaddcld 12618 . . 3 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
104znegcld 12616 . . 3 (𝜑 → -𝐾 ∈ ℤ)
115adantr 482 . . . . 5 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
123adantr 482 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
134adantr 482 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
14 simpr 486 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝑛𝑊)
1514, 2eleqtrdi 2848 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
16 eluzsub 12800 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
1712, 13, 15, 16syl3anc 1372 . . . . . 6 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2849 . . . . 5 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
1911, 18ffvelcdmd 7041 . . . 4 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
206, 19fmpt3d 7069 . . 3 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
21 simpr 486 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → 𝑚𝑍)
2221, 1eleqtrdi 2848 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
23 eluzelz 12780 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
2524zcnd 12615 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝑚 ∈ ℂ)
264zcnd 12615 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
2726adantr 482 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝐾 ∈ ℂ)
2825, 27subnegd 11526 . . . . . . 7 ((𝜑𝑚𝑍) → (𝑚 − -𝐾) = (𝑚 + 𝐾))
2928fveq2d 6851 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐻‘(𝑚 + 𝐾)))
306adantr 482 . . . . . . 7 ((𝜑𝑚𝑍) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
3130fveq1d 6849 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 + 𝐾)) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)))
324adantr 482 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝐾 ∈ ℤ)
33 eluzadd 12799 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3422, 32, 33syl2anc 585 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3534, 2eleqtrrdi 2849 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ 𝑊)
36 fvoveq1 7385 . . . . . . . . 9 (𝑛 = (𝑚 + 𝐾) → (𝐹‘(𝑛𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
37 eqid 2737 . . . . . . . . 9 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
38 fvex 6860 . . . . . . . . 9 (𝐹‘((𝑚 + 𝐾) − 𝐾)) ∈ V
3936, 37, 38fvmpt 6953 . . . . . . . 8 ((𝑚 + 𝐾) ∈ 𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4035, 39syl 17 . . . . . . 7 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4125, 27pncand 11520 . . . . . . . 8 ((𝜑𝑚𝑍) → ((𝑚 + 𝐾) − 𝐾) = 𝑚)
4241fveq2d 6851 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹‘((𝑚 + 𝐾) − 𝐾)) = (𝐹𝑚))
4340, 42eqtrd 2777 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹𝑚))
4429, 31, 433eqtrd 2781 . . . . 5 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐹𝑚))
4544mpteq2dva 5210 . . . 4 (𝜑 → (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐹𝑚)))
463zcnd 12615 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4710zcnd 12615 . . . . . . . . 9 (𝜑 → -𝐾 ∈ ℂ)
4846, 26, 47addassd 11184 . . . . . . . 8 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = (𝑀 + (𝐾 + -𝐾)))
4926negidd 11509 . . . . . . . . 9 (𝜑 → (𝐾 + -𝐾) = 0)
5049oveq2d 7378 . . . . . . . 8 (𝜑 → (𝑀 + (𝐾 + -𝐾)) = (𝑀 + 0))
5146addid1d 11362 . . . . . . . 8 (𝜑 → (𝑀 + 0) = 𝑀)
5248, 50, 513eqtrd 2781 . . . . . . 7 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = 𝑀)
5352fveq2d 6851 . . . . . 6 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ𝑀))
5453, 1eqtr4di 2795 . . . . 5 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = 𝑍)
5554mpteq1d 5205 . . . 4 (𝜑 → (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))))
565feqmptd 6915 . . . 4 (𝜑𝐹 = (𝑚𝑍 ↦ (𝐹𝑚)))
5745, 55, 563eqtr4rd 2788 . . 3 (𝜑𝐹 = (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))))
582, 8, 9, 10, 20, 57ulmshftlem 25764 . 2 (𝜑 → (𝐻(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐺))
597, 58impbid 211 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  cc 11056  0cc0 11058   + caddc 11061  cmin 11392  -cneg 11393  cz 12506  cuz 12770  𝑢culm 25751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-ulm 25752
This theorem is referenced by:  pserdvlem2  25803
  Copyright terms: Public domain W3C validator