MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Visualization version   GIF version

Theorem ulmshft 26315
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshft (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3 𝑍 = (ℤ𝑀)
2 ulmshft.w . . 3 𝑊 = (ℤ‘(𝑀 + 𝐾))
3 ulmshft.m . . 3 (𝜑𝑀 ∈ ℤ)
4 ulmshft.k . . 3 (𝜑𝐾 ∈ ℤ)
5 ulmshft.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 ulmshft.h . . 3 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
71, 2, 3, 4, 5, 6ulmshftlem 26314 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
8 eqid 2729 . . 3 (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ‘((𝑀 + 𝐾) + -𝐾))
93, 4zaddcld 12602 . . 3 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
104znegcld 12600 . . 3 (𝜑 → -𝐾 ∈ ℤ)
115adantr 480 . . . . 5 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
123adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
134adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
14 simpr 484 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝑛𝑊)
1514, 2eleqtrdi 2838 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
16 eluzsub 12783 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
1712, 13, 15, 16syl3anc 1373 . . . . . 6 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2839 . . . . 5 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
1911, 18ffvelcdmd 7023 . . . 4 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
206, 19fmpt3d 7054 . . 3 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
21 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → 𝑚𝑍)
2221, 1eleqtrdi 2838 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
23 eluzelz 12763 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
2524zcnd 12599 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝑚 ∈ ℂ)
264zcnd 12599 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
2726adantr 480 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝐾 ∈ ℂ)
2825, 27subnegd 11500 . . . . . . 7 ((𝜑𝑚𝑍) → (𝑚 − -𝐾) = (𝑚 + 𝐾))
2928fveq2d 6830 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐻‘(𝑚 + 𝐾)))
306adantr 480 . . . . . . 7 ((𝜑𝑚𝑍) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
3130fveq1d 6828 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 + 𝐾)) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)))
324adantr 480 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝐾 ∈ ℤ)
33 eluzadd 12782 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3422, 32, 33syl2anc 584 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3534, 2eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ 𝑊)
36 fvoveq1 7376 . . . . . . . . 9 (𝑛 = (𝑚 + 𝐾) → (𝐹‘(𝑛𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
37 eqid 2729 . . . . . . . . 9 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
38 fvex 6839 . . . . . . . . 9 (𝐹‘((𝑚 + 𝐾) − 𝐾)) ∈ V
3936, 37, 38fvmpt 6934 . . . . . . . 8 ((𝑚 + 𝐾) ∈ 𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4035, 39syl 17 . . . . . . 7 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4125, 27pncand 11494 . . . . . . . 8 ((𝜑𝑚𝑍) → ((𝑚 + 𝐾) − 𝐾) = 𝑚)
4241fveq2d 6830 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹‘((𝑚 + 𝐾) − 𝐾)) = (𝐹𝑚))
4340, 42eqtrd 2764 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹𝑚))
4429, 31, 433eqtrd 2768 . . . . 5 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐹𝑚))
4544mpteq2dva 5188 . . . 4 (𝜑 → (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐹𝑚)))
463zcnd 12599 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4710zcnd 12599 . . . . . . . . 9 (𝜑 → -𝐾 ∈ ℂ)
4846, 26, 47addassd 11156 . . . . . . . 8 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = (𝑀 + (𝐾 + -𝐾)))
4926negidd 11483 . . . . . . . . 9 (𝜑 → (𝐾 + -𝐾) = 0)
5049oveq2d 7369 . . . . . . . 8 (𝜑 → (𝑀 + (𝐾 + -𝐾)) = (𝑀 + 0))
5146addridd 11334 . . . . . . . 8 (𝜑 → (𝑀 + 0) = 𝑀)
5248, 50, 513eqtrd 2768 . . . . . . 7 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = 𝑀)
5352fveq2d 6830 . . . . . 6 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ𝑀))
5453, 1eqtr4di 2782 . . . . 5 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = 𝑍)
5554mpteq1d 5185 . . . 4 (𝜑 → (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))))
565feqmptd 6895 . . . 4 (𝜑𝐹 = (𝑚𝑍 ↦ (𝐹𝑚)))
5745, 55, 563eqtr4rd 2775 . . 3 (𝜑𝐹 = (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))))
582, 8, 9, 10, 20, 57ulmshftlem 26314 . 2 (𝜑 → (𝐻(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐺))
597, 58impbid 212 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  0cc0 11028   + caddc 11031  cmin 11365  -cneg 11366  cz 12489  cuz 12753  𝑢culm 26301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-ulm 26302
This theorem is referenced by:  pserdvlem2  26354
  Copyright terms: Public domain W3C validator