MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Visualization version   GIF version

Theorem ulmshft 25282
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshft (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3 𝑍 = (ℤ𝑀)
2 ulmshft.w . . 3 𝑊 = (ℤ‘(𝑀 + 𝐾))
3 ulmshft.m . . 3 (𝜑𝑀 ∈ ℤ)
4 ulmshft.k . . 3 (𝜑𝐾 ∈ ℤ)
5 ulmshft.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 ulmshft.h . . 3 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
71, 2, 3, 4, 5, 6ulmshftlem 25281 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
8 eqid 2737 . . 3 (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ‘((𝑀 + 𝐾) + -𝐾))
93, 4zaddcld 12286 . . 3 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
104znegcld 12284 . . 3 (𝜑 → -𝐾 ∈ ℤ)
115adantr 484 . . . . 5 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
123adantr 484 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
134adantr 484 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
14 simpr 488 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝑛𝑊)
1514, 2eleqtrdi 2848 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
16 eluzsub 12470 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
1712, 13, 15, 16syl3anc 1373 . . . . . 6 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2849 . . . . 5 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
1911, 18ffvelrnd 6905 . . . 4 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
206, 19fmpt3d 6933 . . 3 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
21 simpr 488 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → 𝑚𝑍)
2221, 1eleqtrdi 2848 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
23 eluzelz 12448 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
2524zcnd 12283 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝑚 ∈ ℂ)
264zcnd 12283 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
2726adantr 484 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝐾 ∈ ℂ)
2825, 27subnegd 11196 . . . . . . 7 ((𝜑𝑚𝑍) → (𝑚 − -𝐾) = (𝑚 + 𝐾))
2928fveq2d 6721 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐻‘(𝑚 + 𝐾)))
306adantr 484 . . . . . . 7 ((𝜑𝑚𝑍) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
3130fveq1d 6719 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 + 𝐾)) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)))
324adantr 484 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝐾 ∈ ℤ)
33 eluzadd 12469 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3422, 32, 33syl2anc 587 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3534, 2eleqtrrdi 2849 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ 𝑊)
36 fvoveq1 7236 . . . . . . . . 9 (𝑛 = (𝑚 + 𝐾) → (𝐹‘(𝑛𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
37 eqid 2737 . . . . . . . . 9 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
38 fvex 6730 . . . . . . . . 9 (𝐹‘((𝑚 + 𝐾) − 𝐾)) ∈ V
3936, 37, 38fvmpt 6818 . . . . . . . 8 ((𝑚 + 𝐾) ∈ 𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4035, 39syl 17 . . . . . . 7 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4125, 27pncand 11190 . . . . . . . 8 ((𝜑𝑚𝑍) → ((𝑚 + 𝐾) − 𝐾) = 𝑚)
4241fveq2d 6721 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹‘((𝑚 + 𝐾) − 𝐾)) = (𝐹𝑚))
4340, 42eqtrd 2777 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹𝑚))
4429, 31, 433eqtrd 2781 . . . . 5 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐹𝑚))
4544mpteq2dva 5150 . . . 4 (𝜑 → (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐹𝑚)))
463zcnd 12283 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4710zcnd 12283 . . . . . . . . 9 (𝜑 → -𝐾 ∈ ℂ)
4846, 26, 47addassd 10855 . . . . . . . 8 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = (𝑀 + (𝐾 + -𝐾)))
4926negidd 11179 . . . . . . . . 9 (𝜑 → (𝐾 + -𝐾) = 0)
5049oveq2d 7229 . . . . . . . 8 (𝜑 → (𝑀 + (𝐾 + -𝐾)) = (𝑀 + 0))
5146addid1d 11032 . . . . . . . 8 (𝜑 → (𝑀 + 0) = 𝑀)
5248, 50, 513eqtrd 2781 . . . . . . 7 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = 𝑀)
5352fveq2d 6721 . . . . . 6 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ𝑀))
5453, 1eqtr4di 2796 . . . . 5 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = 𝑍)
5554mpteq1d 5144 . . . 4 (𝜑 → (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))))
565feqmptd 6780 . . . 4 (𝜑𝐹 = (𝑚𝑍 ↦ (𝐹𝑚)))
5745, 55, 563eqtr4rd 2788 . . 3 (𝜑𝐹 = (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))))
582, 8, 9, 10, 20, 57ulmshftlem 25281 . 2 (𝜑 → (𝐻(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐺))
597, 58impbid 215 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  0cc0 10729   + caddc 10732  cmin 11062  -cneg 11063  cz 12176  cuz 12438  𝑢culm 25268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-ulm 25269
This theorem is referenced by:  pserdvlem2  25320
  Copyright terms: Public domain W3C validator