MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Visualization version   GIF version

Theorem ulmshft 26448
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshft (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3 𝑍 = (ℤ𝑀)
2 ulmshft.w . . 3 𝑊 = (ℤ‘(𝑀 + 𝐾))
3 ulmshft.m . . 3 (𝜑𝑀 ∈ ℤ)
4 ulmshft.k . . 3 (𝜑𝐾 ∈ ℤ)
5 ulmshft.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 ulmshft.h . . 3 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
71, 2, 3, 4, 5, 6ulmshftlem 26447 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
8 eqid 2735 . . 3 (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ‘((𝑀 + 𝐾) + -𝐾))
93, 4zaddcld 12724 . . 3 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
104znegcld 12722 . . 3 (𝜑 → -𝐾 ∈ ℤ)
115adantr 480 . . . . 5 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
123adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
134adantr 480 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
14 simpr 484 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝑛𝑊)
1514, 2eleqtrdi 2849 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
16 eluzsub 12906 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
1712, 13, 15, 16syl3anc 1370 . . . . . 6 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2850 . . . . 5 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
1911, 18ffvelcdmd 7105 . . . 4 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
206, 19fmpt3d 7136 . . 3 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
21 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → 𝑚𝑍)
2221, 1eleqtrdi 2849 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
23 eluzelz 12886 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
2524zcnd 12721 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝑚 ∈ ℂ)
264zcnd 12721 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
2726adantr 480 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝐾 ∈ ℂ)
2825, 27subnegd 11625 . . . . . . 7 ((𝜑𝑚𝑍) → (𝑚 − -𝐾) = (𝑚 + 𝐾))
2928fveq2d 6911 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐻‘(𝑚 + 𝐾)))
306adantr 480 . . . . . . 7 ((𝜑𝑚𝑍) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
3130fveq1d 6909 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 + 𝐾)) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)))
324adantr 480 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝐾 ∈ ℤ)
33 eluzadd 12905 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3422, 32, 33syl2anc 584 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3534, 2eleqtrrdi 2850 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ 𝑊)
36 fvoveq1 7454 . . . . . . . . 9 (𝑛 = (𝑚 + 𝐾) → (𝐹‘(𝑛𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
37 eqid 2735 . . . . . . . . 9 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
38 fvex 6920 . . . . . . . . 9 (𝐹‘((𝑚 + 𝐾) − 𝐾)) ∈ V
3936, 37, 38fvmpt 7016 . . . . . . . 8 ((𝑚 + 𝐾) ∈ 𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4035, 39syl 17 . . . . . . 7 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4125, 27pncand 11619 . . . . . . . 8 ((𝜑𝑚𝑍) → ((𝑚 + 𝐾) − 𝐾) = 𝑚)
4241fveq2d 6911 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹‘((𝑚 + 𝐾) − 𝐾)) = (𝐹𝑚))
4340, 42eqtrd 2775 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹𝑚))
4429, 31, 433eqtrd 2779 . . . . 5 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐹𝑚))
4544mpteq2dva 5248 . . . 4 (𝜑 → (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐹𝑚)))
463zcnd 12721 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4710zcnd 12721 . . . . . . . . 9 (𝜑 → -𝐾 ∈ ℂ)
4846, 26, 47addassd 11281 . . . . . . . 8 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = (𝑀 + (𝐾 + -𝐾)))
4926negidd 11608 . . . . . . . . 9 (𝜑 → (𝐾 + -𝐾) = 0)
5049oveq2d 7447 . . . . . . . 8 (𝜑 → (𝑀 + (𝐾 + -𝐾)) = (𝑀 + 0))
5146addridd 11459 . . . . . . . 8 (𝜑 → (𝑀 + 0) = 𝑀)
5248, 50, 513eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = 𝑀)
5352fveq2d 6911 . . . . . 6 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ𝑀))
5453, 1eqtr4di 2793 . . . . 5 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = 𝑍)
5554mpteq1d 5243 . . . 4 (𝜑 → (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))))
565feqmptd 6977 . . . 4 (𝜑𝐹 = (𝑚𝑍 ↦ (𝐹𝑚)))
5745, 55, 563eqtr4rd 2786 . . 3 (𝜑𝐹 = (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))))
582, 8, 9, 10, 20, 57ulmshftlem 26447 . 2 (𝜑 → (𝐻(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐺))
597, 58impbid 212 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  0cc0 11153   + caddc 11156  cmin 11490  -cneg 11491  cz 12611  cuz 12876  𝑢culm 26434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-ulm 26435
This theorem is referenced by:  pserdvlem2  26487
  Copyright terms: Public domain W3C validator