MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Visualization version   GIF version

Theorem ulmshft 25894
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshft (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3 𝑍 = (ℤ𝑀)
2 ulmshft.w . . 3 𝑊 = (ℤ‘(𝑀 + 𝐾))
3 ulmshft.m . . 3 (𝜑𝑀 ∈ ℤ)
4 ulmshft.k . . 3 (𝜑𝐾 ∈ ℤ)
5 ulmshft.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
6 ulmshft.h . . 3 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
71, 2, 3, 4, 5, 6ulmshftlem 25893 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
8 eqid 2733 . . 3 (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ‘((𝑀 + 𝐾) + -𝐾))
93, 4zaddcld 12667 . . 3 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
104znegcld 12665 . . 3 (𝜑 → -𝐾 ∈ ℤ)
115adantr 482 . . . . 5 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
123adantr 482 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
134adantr 482 . . . . . . 7 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
14 simpr 486 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝑛𝑊)
1514, 2eleqtrdi 2844 . . . . . . 7 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
16 eluzsub 12849 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
1712, 13, 15, 16syl3anc 1372 . . . . . 6 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2845 . . . . 5 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
1911, 18ffvelcdmd 7085 . . . 4 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑m 𝑆))
206, 19fmpt3d 7113 . . 3 (𝜑𝐻:𝑊⟶(ℂ ↑m 𝑆))
21 simpr 486 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → 𝑚𝑍)
2221, 1eleqtrdi 2844 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
23 eluzelz 12829 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
2524zcnd 12664 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝑚 ∈ ℂ)
264zcnd 12664 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
2726adantr 482 . . . . . . . 8 ((𝜑𝑚𝑍) → 𝐾 ∈ ℂ)
2825, 27subnegd 11575 . . . . . . 7 ((𝜑𝑚𝑍) → (𝑚 − -𝐾) = (𝑚 + 𝐾))
2928fveq2d 6893 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐻‘(𝑚 + 𝐾)))
306adantr 482 . . . . . . 7 ((𝜑𝑚𝑍) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
3130fveq1d 6891 . . . . . 6 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 + 𝐾)) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)))
324adantr 482 . . . . . . . . . 10 ((𝜑𝑚𝑍) → 𝐾 ∈ ℤ)
33 eluzadd 12848 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3422, 32, 33syl2anc 585 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
3534, 2eleqtrrdi 2845 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝑚 + 𝐾) ∈ 𝑊)
36 fvoveq1 7429 . . . . . . . . 9 (𝑛 = (𝑚 + 𝐾) → (𝐹‘(𝑛𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
37 eqid 2733 . . . . . . . . 9 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
38 fvex 6902 . . . . . . . . 9 (𝐹‘((𝑚 + 𝐾) − 𝐾)) ∈ V
3936, 37, 38fvmpt 6996 . . . . . . . 8 ((𝑚 + 𝐾) ∈ 𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4035, 39syl 17 . . . . . . 7 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹‘((𝑚 + 𝐾) − 𝐾)))
4125, 27pncand 11569 . . . . . . . 8 ((𝜑𝑚𝑍) → ((𝑚 + 𝐾) − 𝐾) = 𝑚)
4241fveq2d 6893 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹‘((𝑚 + 𝐾) − 𝐾)) = (𝐹𝑚))
4340, 42eqtrd 2773 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘(𝑚 + 𝐾)) = (𝐹𝑚))
4429, 31, 433eqtrd 2777 . . . . 5 ((𝜑𝑚𝑍) → (𝐻‘(𝑚 − -𝐾)) = (𝐹𝑚))
4544mpteq2dva 5248 . . . 4 (𝜑 → (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐹𝑚)))
463zcnd 12664 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4710zcnd 12664 . . . . . . . . 9 (𝜑 → -𝐾 ∈ ℂ)
4846, 26, 47addassd 11233 . . . . . . . 8 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = (𝑀 + (𝐾 + -𝐾)))
4926negidd 11558 . . . . . . . . 9 (𝜑 → (𝐾 + -𝐾) = 0)
5049oveq2d 7422 . . . . . . . 8 (𝜑 → (𝑀 + (𝐾 + -𝐾)) = (𝑀 + 0))
5146addridd 11411 . . . . . . . 8 (𝜑 → (𝑀 + 0) = 𝑀)
5248, 50, 513eqtrd 2777 . . . . . . 7 (𝜑 → ((𝑀 + 𝐾) + -𝐾) = 𝑀)
5352fveq2d 6893 . . . . . 6 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = (ℤ𝑀))
5453, 1eqtr4di 2791 . . . . 5 (𝜑 → (ℤ‘((𝑀 + 𝐾) + -𝐾)) = 𝑍)
5554mpteq1d 5243 . . . 4 (𝜑 → (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))) = (𝑚𝑍 ↦ (𝐻‘(𝑚 − -𝐾))))
565feqmptd 6958 . . . 4 (𝜑𝐹 = (𝑚𝑍 ↦ (𝐹𝑚)))
5745, 55, 563eqtr4rd 2784 . . 3 (𝜑𝐹 = (𝑚 ∈ (ℤ‘((𝑀 + 𝐾) + -𝐾)) ↦ (𝐻‘(𝑚 − -𝐾))))
582, 8, 9, 10, 20, 57ulmshftlem 25893 . 2 (𝜑 → (𝐻(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐺))
597, 58impbid 211 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5148  cmpt 5231  wf 6537  cfv 6541  (class class class)co 7406  m cmap 8817  cc 11105  0cc0 11107   + caddc 11110  cmin 11441  -cneg 11442  cz 12555  cuz 12819  𝑢culm 25880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-ulm 25881
This theorem is referenced by:  pserdvlem2  25932
  Copyright terms: Public domain W3C validator