Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vitali2 Structured version   Visualization version   GIF version

Theorem vitali2 46550
Description: There are non-measurable sets (the Axiom of Choice is used, in the invoked weth 10560). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
vitali2 dom vol ⊊ 𝒫 ℝ

Proof of Theorem vitali2
StepHypRef Expression
1 reex 11271 . . 3 ℝ ∈ V
2 weth 10560 . . 3 (ℝ ∈ V → ∃𝑜 𝑜 We ℝ)
31, 2ax-mp 5 . 2 𝑜 𝑜 We ℝ
4 vitali 25660 . . 3 (𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ)
54exlimiv 1929 . 2 (∃𝑜 𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ)
63, 5ax-mp 5 1 dom vol ⊊ 𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wex 1777  wcel 2103  Vcvv 3482  wpss 3971  𝒫 cpw 4622   We wwe 5653  dom cdm 5699  cr 11179  volcvol 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cc 10500  ax-ac2 10528  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-disj 5137  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-omul 8523  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-dju 9966  df-card 10004  df-acn 10007  df-ac 10181  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ioo 13407  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-rlim 15531  df-sum 15731  df-rest 17477  df-topgen 17498  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22914  df-topon 22931  df-bases 22967  df-cmp 23409  df-ovol 25511  df-vol 25512
This theorem is referenced by:  nsssmfmbf  46635
  Copyright terms: Public domain W3C validator