MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxms Structured version   Visualization version   GIF version

Theorem prdsxms 24487
Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
Assertion
Ref Expression
prdsxms ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp)

Proof of Theorem prdsxms
Dummy variables 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 simp1 1136 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑆𝑊)
3 simp2 1137 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝐼 ∈ Fin)
4 eqid 2734 . . . 4 (dist‘𝑌) = (dist‘𝑌)
5 eqid 2734 . . . 4 (Base‘𝑌) = (Base‘𝑌)
6 simp3 1138 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑅:𝐼⟶∞MetSp)
71, 2, 3, 4, 5, 6prdsxmslem1 24485 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)))
8 ssid 3986 . . 3 (Base‘𝑌) ⊆ (Base‘𝑌)
9 xmetres2 24316 . . 3 (((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)))
107, 8, 9sylancl 586 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)))
11 eqid 2734 . . . 4 (TopOpen‘𝑌) = (TopOpen‘𝑌)
12 eqid 2734 . . . 4 (Base‘(𝑅𝑘)) = (Base‘(𝑅𝑘))
13 eqid 2734 . . . 4 ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) = ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘))))
14 eqid 2734 . . . 4 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
15 eqid 2734 . . . 4 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
161, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15prdsxmslem2 24486 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘(dist‘𝑌)))
17 xmetf 24284 . . . . 5 ((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) → (dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ*)
18 ffn 6716 . . . . 5 ((dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ* → (dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)))
19 fnresdm 6667 . . . . 5 ((dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌))
207, 17, 18, 194syl 19 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌))
2120fveq2d 6890 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))) = (MetOpen‘(dist‘𝑌)))
2216, 21eqtr4d 2772 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))))
23 eqid 2734 . . 3 ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))
2411, 5, 23isxms2 24403 . 2 (𝑌 ∈ ∞MetSp ↔ (((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))))))
2510, 22, 24sylanbrc 583 1 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wral 3050  wrex 3059  cdif 3928  wss 3931   cuni 4887   × cxp 5663  cres 5667  ccom 5669   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  Xcixp 8919  Fincfn 8967  *cxr 11276  Basecbs 17229  distcds 17282  TopOpenctopn 17437  Xscprds 17461  ∞Metcxmet 21311  MetOpencmopn 21316  ∞MetSpcxms 24272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-fz 13530  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-topgen 17459  df-pt 17460  df-prds 17463  df-psmet 21318  df-xmet 21319  df-bl 21321  df-mopn 21322  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-xms 24275
This theorem is referenced by:  prdsms  24488  pwsxms  24489  xpsxms  24491
  Copyright terms: Public domain W3C validator