Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsxms | Structured version Visualization version GIF version |
Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
Ref | Expression |
---|---|
prdsxms | ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsxms.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | simp1 1133 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑆 ∈ 𝑊) | |
3 | simp2 1134 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝐼 ∈ Fin) | |
4 | eqid 2758 | . . . 4 ⊢ (dist‘𝑌) = (dist‘𝑌) | |
5 | eqid 2758 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
6 | simp3 1135 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑅:𝐼⟶∞MetSp) | |
7 | 1, 2, 3, 4, 5, 6 | prdsxmslem1 23235 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (dist‘𝑌) ∈ (∞Met‘(Base‘𝑌))) |
8 | ssid 3916 | . . 3 ⊢ (Base‘𝑌) ⊆ (Base‘𝑌) | |
9 | xmetres2 23068 | . . 3 ⊢ (((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌))) | |
10 | 7, 8, 9 | sylancl 589 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌))) |
11 | eqid 2758 | . . . 4 ⊢ (TopOpen‘𝑌) = (TopOpen‘𝑌) | |
12 | eqid 2758 | . . . 4 ⊢ (Base‘(𝑅‘𝑘)) = (Base‘(𝑅‘𝑘)) | |
13 | eqid 2758 | . . . 4 ⊢ ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) = ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) | |
14 | eqid 2758 | . . . 4 ⊢ (TopOpen‘(𝑅‘𝑘)) = (TopOpen‘(𝑅‘𝑘)) | |
15 | eqid 2758 | . . . 4 ⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} | |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15 | prdsxmslem2 23236 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘(dist‘𝑌))) |
17 | xmetf 23036 | . . . . 5 ⊢ ((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) → (dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ*) | |
18 | ffn 6502 | . . . . 5 ⊢ ((dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ* → (dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌))) | |
19 | fnresdm 6453 | . . . . 5 ⊢ ((dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌)) | |
20 | 7, 17, 18, 19 | 4syl 19 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌)) |
21 | 20 | fveq2d 6666 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))) = (MetOpen‘(dist‘𝑌))) |
22 | 16, 21 | eqtr4d 2796 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))))) |
23 | eqid 2758 | . . 3 ⊢ ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) | |
24 | 11, 5, 23 | isxms2 23155 | . 2 ⊢ (𝑌 ∈ ∞MetSp ↔ (((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))))) |
25 | 10, 22, 24 | sylanbrc 586 | 1 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 ∖ cdif 3857 ⊆ wss 3860 ∪ cuni 4801 × cxp 5525 ↾ cres 5529 ∘ ccom 5531 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 Xcixp 8484 Fincfn 8532 ℝ*cxr 10717 Basecbs 16546 distcds 16637 TopOpenctopn 16758 Xscprds 16782 ∞Metcxmet 20156 MetOpencmopn 20161 ∞MetSpcxms 23024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fi 8913 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-icc 12791 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-hom 16652 df-cco 16653 df-rest 16759 df-topn 16760 df-topgen 16780 df-pt 16781 df-prds 16784 df-psmet 20163 df-xmet 20164 df-bl 20166 df-mopn 20167 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-xms 23027 |
This theorem is referenced by: prdsms 23238 pwsxms 23239 xpsxms 23241 |
Copyright terms: Public domain | W3C validator |