Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsxms | Structured version Visualization version GIF version |
Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
Ref | Expression |
---|---|
prdsxms | ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsxms.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | simp1 1137 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑆 ∈ 𝑊) | |
3 | simp2 1138 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝐼 ∈ Fin) | |
4 | eqid 2738 | . . . 4 ⊢ (dist‘𝑌) = (dist‘𝑌) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
6 | simp3 1139 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑅:𝐼⟶∞MetSp) | |
7 | 1, 2, 3, 4, 5, 6 | prdsxmslem1 23806 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (dist‘𝑌) ∈ (∞Met‘(Base‘𝑌))) |
8 | ssid 3965 | . . 3 ⊢ (Base‘𝑌) ⊆ (Base‘𝑌) | |
9 | xmetres2 23636 | . . 3 ⊢ (((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌))) | |
10 | 7, 8, 9 | sylancl 587 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌))) |
11 | eqid 2738 | . . . 4 ⊢ (TopOpen‘𝑌) = (TopOpen‘𝑌) | |
12 | eqid 2738 | . . . 4 ⊢ (Base‘(𝑅‘𝑘)) = (Base‘(𝑅‘𝑘)) | |
13 | eqid 2738 | . . . 4 ⊢ ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) = ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) | |
14 | eqid 2738 | . . . 4 ⊢ (TopOpen‘(𝑅‘𝑘)) = (TopOpen‘(𝑅‘𝑘)) | |
15 | eqid 2738 | . . . 4 ⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} | |
16 | 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15 | prdsxmslem2 23807 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘(dist‘𝑌))) |
17 | xmetf 23604 | . . . . 5 ⊢ ((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) → (dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ*) | |
18 | ffn 6664 | . . . . 5 ⊢ ((dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ* → (dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌))) | |
19 | fnresdm 6616 | . . . . 5 ⊢ ((dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌)) | |
20 | 7, 17, 18, 19 | 4syl 19 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌)) |
21 | 20 | fveq2d 6842 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))) = (MetOpen‘(dist‘𝑌))) |
22 | 16, 21 | eqtr4d 2781 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))))) |
23 | eqid 2738 | . . 3 ⊢ ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) | |
24 | 11, 5, 23 | isxms2 23723 | . 2 ⊢ (𝑌 ∈ ∞MetSp ↔ (((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))))) |
25 | 10, 22, 24 | sylanbrc 584 | 1 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2715 ∀wral 3063 ∃wrex 3072 ∖ cdif 3906 ⊆ wss 3909 ∪ cuni 4864 × cxp 5629 ↾ cres 5633 ∘ ccom 5635 Fn wfn 6487 ⟶wf 6488 ‘cfv 6492 (class class class)co 7350 Xcixp 8769 Fincfn 8817 ℝ*cxr 11122 Basecbs 17018 distcds 17077 TopOpenctopn 17238 Xscprds 17262 ∞Metcxmet 20704 MetOpencmopn 20709 ∞MetSpcxms 23592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-pre-sup 11063 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-iin 4956 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-1st 7912 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-1o 8380 df-er 8582 df-map 8701 df-ixp 8770 df-en 8818 df-dom 8819 df-sdom 8820 df-fin 8821 df-fi 9281 df-sup 9312 df-inf 9313 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-4 12152 df-5 12153 df-6 12154 df-7 12155 df-8 12156 df-9 12157 df-n0 12348 df-z 12434 df-dec 12552 df-uz 12697 df-q 12803 df-rp 12845 df-xneg 12962 df-xadd 12963 df-xmul 12964 df-icc 13200 df-fz 13354 df-struct 16954 df-slot 16989 df-ndx 17001 df-base 17019 df-plusg 17081 df-mulr 17082 df-sca 17084 df-vsca 17085 df-ip 17086 df-tset 17087 df-ple 17088 df-ds 17090 df-hom 17092 df-cco 17093 df-rest 17239 df-topn 17240 df-topgen 17260 df-pt 17261 df-prds 17264 df-psmet 20711 df-xmet 20712 df-bl 20714 df-mopn 20715 df-top 22165 df-topon 22182 df-topsp 22204 df-bases 22218 df-xms 23595 |
This theorem is referenced by: prdsms 23809 pwsxms 23810 xpsxms 23812 |
Copyright terms: Public domain | W3C validator |