| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxms | Structured version Visualization version GIF version | ||
| Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsbas.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
| Ref | Expression |
|---|---|
| tmsxms | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | . . . . . 6 ⊢ 𝐾 = (toMetSp‘𝐷) | |
| 2 | 1 | tmsds 24379 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
| 3 | 1 | tmsbas 24378 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
| 4 | 3 | fveq2d 6865 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
| 5 | 2, 4 | eleq12d 2823 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)))) |
| 6 | 5 | ibi 267 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾))) |
| 7 | ssid 3972 | . . 3 ⊢ (Base‘𝐾) ⊆ (Base‘𝐾) | |
| 8 | xmetres2 24256 | . . 3 ⊢ (((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) | |
| 9 | 6, 7, 8 | sylancl 586 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) |
| 10 | xmetf 24224 | . . . . . 6 ⊢ ((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) → (dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ*) | |
| 11 | ffn 6691 | . . . . . 6 ⊢ ((dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ* → (dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾))) | |
| 12 | fnresdm 6640 | . . . . . 6 ⊢ ((dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) | |
| 13 | 6, 10, 11, 12 | 4syl 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) |
| 14 | 13, 2 | eqtr4d 2768 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷) |
| 15 | 14 | fveq2d 6865 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘𝐷)) |
| 16 | eqid 2730 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 17 | 1, 16 | tmstopn 24380 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| 18 | 15, 17 | eqtr2d 2766 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
| 19 | eqid 2730 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 20 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 21 | eqid 2730 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 22 | 19, 20, 21 | isxms2 24343 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
| 23 | 9, 18, 22 | sylanbrc 583 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ℝ*cxr 11214 Basecbs 17186 distcds 17236 TopOpenctopn 17391 ∞Metcxmet 21256 MetOpencmopn 21261 ∞MetSpcxms 24212 toMetSpctms 24214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ds 17249 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-tms 24217 |
| This theorem is referenced by: tmsms 24382 tmsxps 24431 tmsxpsmopn 24432 tmsxpsval 24433 |
| Copyright terms: Public domain | W3C validator |