MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxms Structured version   Visualization version   GIF version

Theorem tmsxms 24499
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
tmsbas.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsxms (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp)

Proof of Theorem tmsxms
StepHypRef Expression
1 tmsbas.k . . . . . 6 𝐾 = (toMetSp‘𝐷)
21tmsds 24497 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
31tmsbas 24496 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
43fveq2d 6910 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾)))
52, 4eleq12d 2835 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾))))
65ibi 267 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)))
7 ssid 4006 . . 3 (Base‘𝐾) ⊆ (Base‘𝐾)
8 xmetres2 24371 . . 3 (((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
96, 7, 8sylancl 586 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
10 xmetf 24339 . . . . . 6 ((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) → (dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ*)
11 ffn 6736 . . . . . 6 ((dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ* → (dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)))
12 fnresdm 6687 . . . . . 6 ((dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾))
136, 10, 11, 124syl 19 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾))
1413, 2eqtr4d 2780 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷)
1514fveq2d 6910 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘𝐷))
16 eqid 2737 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
171, 16tmstopn 24498 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾))
1815, 17eqtr2d 2778 . 2 (𝐷 ∈ (∞Met‘𝑋) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
19 eqid 2737 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
20 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2737 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2219, 20, 21isxms2 24458 . 2 (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
239, 18, 22sylanbrc 583 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951   × cxp 5683  cres 5687   Fn wfn 6556  wf 6557  cfv 6561  *cxr 11294  Basecbs 17247  distcds 17306  TopOpenctopn 17466  ∞Metcxmet 21349  MetOpencmopn 21354  ∞MetSpcxms 24327  toMetSpctms 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ds 17319  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-tms 24332
This theorem is referenced by:  tmsms  24500  tmsxps  24549  tmsxpsmopn  24550  tmsxpsval  24551
  Copyright terms: Public domain W3C validator