![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmsxms | Structured version Visualization version GIF version |
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tmsbas.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
Ref | Expression |
---|---|
tmsxms | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsbas.k | . . . . . 6 ⊢ 𝐾 = (toMetSp‘𝐷) | |
2 | 1 | tmsds 24215 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
3 | 1 | tmsbas 24214 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
4 | 3 | fveq2d 6896 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
5 | 2, 4 | eleq12d 2825 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)))) |
6 | 5 | ibi 266 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾))) |
7 | ssid 4005 | . . 3 ⊢ (Base‘𝐾) ⊆ (Base‘𝐾) | |
8 | xmetres2 24089 | . . 3 ⊢ (((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) | |
9 | 6, 7, 8 | sylancl 584 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) |
10 | xmetf 24057 | . . . . . 6 ⊢ ((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) → (dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ*) | |
11 | ffn 6718 | . . . . . 6 ⊢ ((dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ* → (dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾))) | |
12 | fnresdm 6670 | . . . . . 6 ⊢ ((dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) | |
13 | 6, 10, 11, 12 | 4syl 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) |
14 | 13, 2 | eqtr4d 2773 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷) |
15 | 14 | fveq2d 6896 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘𝐷)) |
16 | eqid 2730 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
17 | 1, 16 | tmstopn 24216 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
18 | 15, 17 | eqtr2d 2771 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
19 | eqid 2730 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
20 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | eqid 2730 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
22 | 19, 20, 21 | isxms2 24176 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
23 | 9, 18, 22 | sylanbrc 581 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3949 × cxp 5675 ↾ cres 5679 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 ℝ*cxr 11253 Basecbs 17150 distcds 17212 TopOpenctopn 17373 ∞Metcxmet 21131 MetOpencmopn 21136 ∞MetSpcxms 24045 toMetSpctms 24047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-tset 17222 df-ds 17225 df-rest 17374 df-topn 17375 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-bl 21141 df-mopn 21142 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-xms 24048 df-tms 24050 |
This theorem is referenced by: tmsms 24218 tmsxps 24267 tmsxpsmopn 24268 tmsxpsval 24269 |
Copyright terms: Public domain | W3C validator |