MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxms Structured version   Visualization version   GIF version

Theorem tmsxms 22661
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
tmsbas.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsxms (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp)

Proof of Theorem tmsxms
StepHypRef Expression
1 tmsbas.k . . . . . 6 𝐾 = (toMetSp‘𝐷)
21tmsds 22659 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
31tmsbas 22658 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
43fveq2d 6437 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾)))
52, 4eleq12d 2900 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾))))
65ibi 259 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)))
7 ssid 3848 . . 3 (Base‘𝐾) ⊆ (Base‘𝐾)
8 xmetres2 22536 . . 3 (((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
96, 7, 8sylancl 582 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
10 xmetf 22504 . . . . . 6 ((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) → (dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ*)
11 ffn 6278 . . . . . 6 ((dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ* → (dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)))
12 fnresdm 6233 . . . . . 6 ((dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾))
136, 10, 11, 124syl 19 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾))
1413, 2eqtr4d 2864 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷)
1514fveq2d 6437 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘𝐷))
16 eqid 2825 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
171, 16tmstopn 22660 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾))
1815, 17eqtr2d 2862 . 2 (𝐷 ∈ (∞Met‘𝑋) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
19 eqid 2825 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
20 eqid 2825 . . 3 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2825 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2219, 20, 21isxms2 22623 . 2 (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
239, 18, 22sylanbrc 580 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wss 3798   × cxp 5340  cres 5344   Fn wfn 6118  wf 6119  cfv 6123  *cxr 10390  Basecbs 16222  distcds 16314  TopOpenctopn 16435  ∞Metcxmet 20091  MetOpencmopn 20096  ∞MetSpcxms 22492  toMetSpctms 22494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-tset 16324  df-ds 16327  df-rest 16436  df-topn 16437  df-topgen 16457  df-psmet 20098  df-xmet 20099  df-bl 20101  df-mopn 20102  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-xms 22495  df-tms 22497
This theorem is referenced by:  tmsms  22662  tmsxps  22711  tmsxpsmopn  22712  tmsxpsval  22713
  Copyright terms: Public domain W3C validator