Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmsxms | Structured version Visualization version GIF version |
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tmsbas.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
Ref | Expression |
---|---|
tmsxms | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsbas.k | . . . . . 6 ⊢ 𝐾 = (toMetSp‘𝐷) | |
2 | 1 | tmsds 23237 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
3 | 1 | tmsbas 23236 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
4 | 3 | fveq2d 6678 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
5 | 2, 4 | eleq12d 2827 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)))) |
6 | 5 | ibi 270 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝐾) ∈ (∞Met‘(Base‘𝐾))) |
7 | ssid 3899 | . . 3 ⊢ (Base‘𝐾) ⊆ (Base‘𝐾) | |
8 | xmetres2 23114 | . . 3 ⊢ (((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) | |
9 | 6, 7, 8 | sylancl 589 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾))) |
10 | xmetf 23082 | . . . . . 6 ⊢ ((dist‘𝐾) ∈ (∞Met‘(Base‘𝐾)) → (dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ*) | |
11 | ffn 6504 | . . . . . 6 ⊢ ((dist‘𝐾):((Base‘𝐾) × (Base‘𝐾))⟶ℝ* → (dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾))) | |
12 | fnresdm 6455 | . . . . . 6 ⊢ ((dist‘𝐾) Fn ((Base‘𝐾) × (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) | |
13 | 6, 10, 11, 12 | 4syl 19 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = (dist‘𝐾)) |
14 | 13, 2 | eqtr4d 2776 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷) |
15 | 14 | fveq2d 6678 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘𝐷)) |
16 | eqid 2738 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
17 | 1, 16 | tmstopn 23238 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
18 | 15, 17 | eqtr2d 2774 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
19 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
20 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | eqid 2738 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
22 | 19, 20, 21 | isxms2 23201 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
23 | 9, 18, 22 | sylanbrc 586 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 × cxp 5523 ↾ cres 5527 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 ℝ*cxr 10752 Basecbs 16586 distcds 16677 TopOpenctopn 16798 ∞Metcxmet 20202 MetOpencmopn 20207 ∞MetSpcxms 23070 toMetSpctms 23072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-tset 16687 df-ds 16690 df-rest 16799 df-topn 16800 df-topgen 16820 df-psmet 20209 df-xmet 20210 df-bl 20212 df-mopn 20213 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-xms 23073 df-tms 23075 |
This theorem is referenced by: tmsms 23240 tmsxps 23289 tmsxpsmopn 23290 tmsxpsval 23291 |
Copyright terms: Public domain | W3C validator |