| Step | Hyp | Ref
| Expression |
| 1 | | xmulcand.3 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 2 | | xmulcand.4 |
. . . 4
⊢ (𝜑 → 𝐶 ≠ 0) |
| 3 | | xrecex 32849 |
. . . 4
⊢ ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1) |
| 5 | | oveq2 7422 |
. . . 4
⊢ ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → (𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵))) |
| 6 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ) |
| 7 | 6 | rexrd 11294 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ*) |
| 8 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ) |
| 9 | 8 | rexrd 11294 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈
ℝ*) |
| 10 | | xmulcom 13291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥)) |
| 11 | 7, 9, 10 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥)) |
| 12 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝐶 ·e 𝑥) = 1) |
| 13 | 11, 12 | eqtrd 2769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = 1) |
| 14 | 13 | oveq1d 7429 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (1 ·e 𝐴)) |
| 15 | | xmulcand.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐴 ∈
ℝ*) |
| 17 | | xmulass 13312 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐴
∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴))) |
| 18 | 7, 9, 16, 17 | syl3anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴))) |
| 19 | | xmullid 13305 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (1 ·e 𝐴) = 𝐴) |
| 20 | 16, 19 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐴) = 𝐴) |
| 21 | 14, 18, 20 | 3eqtr3d 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐴)) = 𝐴) |
| 22 | 13 | oveq1d 7429 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (1 ·e 𝐵)) |
| 23 | | xmulcand.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐵 ∈
ℝ*) |
| 25 | | xmulass 13312 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵))) |
| 26 | 7, 9, 24, 25 | syl3anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵))) |
| 27 | | xmullid 13305 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ (1 ·e 𝐵) = 𝐵) |
| 28 | 24, 27 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐵) = 𝐵) |
| 29 | 22, 26, 28 | 3eqtr3d 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐵)) = 𝐵) |
| 30 | 21, 29 | eqeq12d 2750 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)) ↔ 𝐴 = 𝐵)) |
| 31 | 5, 30 | imbitrid 244 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵)) |
| 32 | 4, 31 | rexlimddv 3148 |
. 2
⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵)) |
| 33 | | oveq2 7422 |
. 2
⊢ (𝐴 = 𝐵 → (𝐶 ·e 𝐴) = (𝐶 ·e 𝐵)) |
| 34 | 32, 33 | impbid1 225 |
1
⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵)) |