Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xmulcand Structured version   Visualization version   GIF version

Theorem xmulcand 31847
Description: Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Hypotheses
Ref Expression
xmulcand.1 (𝜑𝐴 ∈ ℝ*)
xmulcand.2 (𝜑𝐵 ∈ ℝ*)
xmulcand.3 (𝜑𝐶 ∈ ℝ)
xmulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
xmulcand (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem xmulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 xmulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 xrecex 31846 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1)
5 oveq2 7370 . . . 4 ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → (𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)))
6 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ)
76rexrd 11214 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ*)
81adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ)
98rexrd 11214 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ*)
10 xmulcom 13195 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
117, 9, 10syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
12 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝐶 ·e 𝑥) = 1)
1311, 12eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = 1)
1413oveq1d 7377 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (1 ·e 𝐴))
15 xmulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1615adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐴 ∈ ℝ*)
17 xmulass 13216 . . . . . . 7 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴)))
187, 9, 16, 17syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴)))
19 xmullid 13209 . . . . . . 7 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
2016, 19syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐴) = 𝐴)
2114, 18, 203eqtr3d 2779 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐴)) = 𝐴)
2213oveq1d 7377 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (1 ·e 𝐵))
23 xmulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐵 ∈ ℝ*)
25 xmulass 13216 . . . . . . 7 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵)))
267, 9, 24, 25syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵)))
27 xmullid 13209 . . . . . . 7 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
2824, 27syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐵) = 𝐵)
2922, 26, 283eqtr3d 2779 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐵)) = 𝐵)
3021, 29eqeq12d 2747 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)) ↔ 𝐴 = 𝐵))
315, 30imbitrid 243 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵))
324, 31rexlimddv 3154 . 2 (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵))
33 oveq2 7370 . 2 (𝐴 = 𝐵 → (𝐶 ·e 𝐴) = (𝐶 ·e 𝐵))
3432, 33impbid1 224 1 (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wrex 3069  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061  *cxr 11197   ·e cxmu 13041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-xneg 13042  df-xmul 13044
This theorem is referenced by:  xreceu  31848
  Copyright terms: Public domain W3C validator