Step | Hyp | Ref
| Expression |
1 | | xmulcand.3 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
2 | | xmulcand.4 |
. . . 4
⊢ (𝜑 → 𝐶 ≠ 0) |
3 | | xrecex 31096 |
. . . 4
⊢ ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1) |
4 | 1, 2, 3 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1) |
5 | | oveq2 7263 |
. . . 4
⊢ ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → (𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵))) |
6 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ) |
7 | 6 | rexrd 10956 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ*) |
8 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ) |
9 | 8 | rexrd 10956 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈
ℝ*) |
10 | | xmulcom 12929 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥)) |
11 | 7, 9, 10 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥)) |
12 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝐶 ·e 𝑥) = 1) |
13 | 11, 12 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = 1) |
14 | 13 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (1 ·e 𝐴)) |
15 | | xmulcand.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐴 ∈
ℝ*) |
17 | | xmulass 12950 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐴
∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴))) |
18 | 7, 9, 16, 17 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴))) |
19 | | xmulid2 12943 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (1 ·e 𝐴) = 𝐴) |
20 | 16, 19 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐴) = 𝐴) |
21 | 14, 18, 20 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐴)) = 𝐴) |
22 | 13 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (1 ·e 𝐵)) |
23 | | xmulcand.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐵 ∈
ℝ*) |
25 | | xmulass 12950 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵))) |
26 | 7, 9, 24, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵))) |
27 | | xmulid2 12943 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ (1 ·e 𝐵) = 𝐵) |
28 | 24, 27 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐵) = 𝐵) |
29 | 22, 26, 28 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐵)) = 𝐵) |
30 | 21, 29 | eqeq12d 2754 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)) ↔ 𝐴 = 𝐵)) |
31 | 5, 30 | syl5ib 243 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵)) |
32 | 4, 31 | rexlimddv 3219 |
. 2
⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵)) |
33 | | oveq2 7263 |
. 2
⊢ (𝐴 = 𝐵 → (𝐶 ·e 𝐴) = (𝐶 ·e 𝐵)) |
34 | 32, 33 | impbid1 224 |
1
⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵)) |