ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1a GIF version

Theorem 2lgslem1a 15236
Description: Lemma 1 for 2lgslem1 15239. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12251 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 9296 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad2antrr 488 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ0)
4 4nn 9148 . . . . . . . 8 4 ∈ ℕ
53, 4jctir 313 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
6 fldivnn0 10367 . . . . . . 7 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
7 nn0p1nn 9282 . . . . . . 7 ((⌊‘(𝑃 / 4)) ∈ ℕ0 → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
85, 6, 73syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℕ)
9 elnnuz 9632 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
108, 9sylib 122 . . . . 5 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1))
11 fzss1 10132 . . . . 5 (((⌊‘(𝑃 / 4)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)))
12 rexss 3247 . . . . 5 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ⊆ (1...((𝑃 − 1) / 2)) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
1310, 11, 123syl 17 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2))))
14 ancom 266 . . . . . 6 ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))))
152, 4jctir 313 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ))
1615, 6syl 14 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℕ0)
1716nn0zd 9440 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
1817ad2antrr 488 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (⌊‘(𝑃 / 4)) ∈ ℤ)
19 elfzelz 10094 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
20 zltp1le 9374 . . . . . . . . . . . . . 14 (((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2118, 19, 20syl2an 289 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖))
2221bicomd 141 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖 ↔ (⌊‘(𝑃 / 4)) < 𝑖))
2322anbi1d 465 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2419adantl 277 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
2517peano2zd 9445 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2625adantr 276 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
2726ad2antrr 488 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ)
28 prmz 12252 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 oddm1d2 12036 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3028, 29syl 14 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3130biimpa 296 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
3231ad2antrr 488 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
33 elfz 10083 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3424, 27, 32, 33syl3anc 1249 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
35 elfzle2 10097 . . . . . . . . . . . . 13 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ≤ ((𝑃 − 1) / 2))
3635adantl 277 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ≤ ((𝑃 − 1) / 2))
3736biantrud 304 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ ((⌊‘(𝑃 / 4)) < 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
3823, 34, 373bitr4d 220 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (⌊‘(𝑃 / 4)) < 𝑖))
3928ad2antrr 488 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
40 2lgslem1a2 15235 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4139, 19, 40syl2an 289 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((⌊‘(𝑃 / 4)) < 𝑖 ↔ (𝑃 / 2) < (𝑖 · 2)))
4238, 41bitrd 188 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑖 · 2)))
43 2lgslem1a1 15234 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
441, 43sylan 283 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
4544adantr 276 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → ∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃))
46 oveq1 5926 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 · 2) = (𝑖 · 2))
4746oveq1d 5934 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝑘 · 2) mod 𝑃) = ((𝑖 · 2) mod 𝑃))
4846, 47eqeq12d 2208 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ↔ (𝑖 · 2) = ((𝑖 · 2) mod 𝑃)))
4948rspccva 2864 . . . . . . . . . . 11 ((∀𝑘 ∈ (1...((𝑃 − 1) / 2))(𝑘 · 2) = ((𝑘 · 2) mod 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5045, 49sylan 283 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
5150breq2d 4042 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 / 2) < (𝑖 · 2) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
5242, 51bitrd 188 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < ((𝑖 · 2) mod 𝑃)))
53 oveq1 5926 . . . . . . . . . 10 (𝑥 = (𝑖 · 2) → (𝑥 mod 𝑃) = ((𝑖 · 2) mod 𝑃))
5453eqcomd 2199 . . . . . . . . 9 (𝑥 = (𝑖 · 2) → ((𝑖 · 2) mod 𝑃) = (𝑥 mod 𝑃))
5554breq2d 4042 . . . . . . . 8 (𝑥 = (𝑖 · 2) → ((𝑃 / 2) < ((𝑖 · 2) mod 𝑃) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5652, 55sylan9bb 462 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) ∧ 𝑥 = (𝑖 · 2)) → (𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↔ (𝑃 / 2) < (𝑥 mod 𝑃)))
5756pm5.32da 452 . . . . . 6 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑥 = (𝑖 · 2) ∧ 𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5814, 57bitrid 192 . . . . 5 ((((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ (𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
5958rexbidva 2491 . . . 4 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∧ 𝑥 = (𝑖 · 2)) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6013, 59bitrd 188 . . 3 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))))
6160bicomd 141 . 2 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑥 ∈ ℤ) → (∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃)) ↔ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)))
6261rabbidva 2748 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   / cdiv 8693  cn 8984  2c2 9035  4c4 9037  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  cfl 10340   mod cmo 10396  cdvds 11933  cprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-dvds 11934  df-prm 12249
This theorem is referenced by:  2lgslem1  15239
  Copyright terms: Public domain W3C validator