ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1a1 Unicode version

Theorem 2lgslem1a1 15730
Description: Lemma 1 for 2lgslem1a 15732. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) )
Distinct variable group:    P, i

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 elfzelz 10189 . . . . . . 7  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  e.  ZZ )
21adantl 277 . . . . . 6  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  i  e.  ZZ )
3 2z 9442 . . . . . . 7  |-  2  e.  ZZ
43a1i 9 . . . . . 6  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
52, 4zmulcld 9543 . . . . 5  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  e.  ZZ )
6 zq 9789 . . . . 5  |-  ( ( i  x.  2 )  e.  ZZ  ->  (
i  x.  2 )  e.  QQ )
75, 6syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  e.  QQ )
8 nnq 9796 . . . . 5  |-  ( P  e.  NN  ->  P  e.  QQ )
98ad2antrr 488 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  QQ )
10 elfznn 10218 . . . . . 6  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  e.  NN )
11 nnre 9085 . . . . . . 7  |-  ( i  e.  NN  ->  i  e.  RR )
12 nnnn0 9344 . . . . . . . 8  |-  ( i  e.  NN  ->  i  e.  NN0 )
1312nn0ge0d 9393 . . . . . . 7  |-  ( i  e.  NN  ->  0  <_  i )
14 2re 9148 . . . . . . . . 9  |-  2  e.  RR
15 0le2 9168 . . . . . . . . 9  |-  0  <_  2
1614, 15pm3.2i 272 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <_  2 )
1716a1i 9 . . . . . . 7  |-  ( i  e.  NN  ->  (
2  e.  RR  /\  0  <_  2 ) )
18 mulge0 8734 . . . . . . 7  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( 2  e.  RR  /\  0  <_  2 ) )  ->  0  <_  ( i  x.  2 ) )
1911, 13, 17, 18syl21anc 1251 . . . . . 6  |-  ( i  e.  NN  ->  0  <_  ( i  x.  2 ) )
2010, 19syl 14 . . . . 5  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  0  <_  ( i  x.  2 ) )
2120adantl 277 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  ( i  x.  2 ) )
22 elfz2 10179 . . . . . 6  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  <->  ( (
1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
23 zre 9418 . . . . . . . . . . 11  |-  ( i  e.  ZZ  ->  i  e.  RR )
24233ad2ant3 1025 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  i  e.  RR )
25 zre 9418 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
( P  -  1 )  /  2 )  e.  RR )
26253ad2ant2 1024 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( P  - 
1 )  /  2
)  e.  RR )
27 2pos 9169 . . . . . . . . . . . 12  |-  0  <  2
2814, 27pm3.2i 272 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( 2  e.  RR  /\  0  <  2 ) )
30 lemul1 8708 . . . . . . . . . 10  |-  ( ( i  e.  RR  /\  ( ( P  - 
1 )  /  2
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( i  <_  ( ( P  - 
1 )  /  2
)  <->  ( i  x.  2 )  <_  (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
3124, 26, 29, 30syl3anc 1252 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  <_  (
( P  -  1 )  /  2 )  <-> 
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 ) ) )
32 nncn 9086 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  NN  ->  P  e.  CC )
33 peano2cnm 8380 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  CC  ->  ( P  -  1 )  e.  CC )
3432, 33syl 14 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  CC )
35 2cnd 9151 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  2  e.  CC )
36 2ap0 9171 . . . . . . . . . . . . . . . . 17  |-  2 #  0
3736a1i 9 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  2 #  0 )
3834, 35, 37divcanap1d 8906 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
3938adantr 276 . . . . . . . . . . . . . 14  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( P  -  1 )  /  2 )  x.  2 )  =  ( P  -  1 ) )
4039adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
4140breq2d 4074 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  <->  ( i  x.  2 )  <_  ( P  -  1 ) ) )
42 id 19 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ZZ  ->  i  e.  ZZ )
433a1i 9 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ZZ  ->  2  e.  ZZ )
4442, 43zmulcld 9543 . . . . . . . . . . . . . . 15  |-  ( i  e.  ZZ  ->  (
i  x.  2 )  e.  ZZ )
45443ad2ant3 1025 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  x.  2 )  e.  ZZ )
46 nnz 9433 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  ZZ )
4746adantr 276 . . . . . . . . . . . . . 14  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  P  e.  ZZ )
48 zltlem1 9472 . . . . . . . . . . . . . 14  |-  ( ( ( i  x.  2 )  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( i  x.  2 )  <  P  <->  ( i  x.  2 )  <_  ( P  - 
1 ) ) )
4945, 47, 48syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <  P  <->  ( i  x.  2 )  <_  ( P  -  1 ) ) )
5049biimprd 158 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( P  -  1 )  -> 
( i  x.  2 )  <  P ) )
5141, 50sylbid 150 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  -> 
( i  x.  2 )  <  P ) )
5251ex 115 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  -> 
( i  x.  2 )  <  P ) ) )
5352com23 78 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( i  x.  2 )  <_  (
( ( P  - 
1 )  /  2
)  x.  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) )
5431, 53sylbid 150 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  <_  (
( P  -  1 )  /  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) )
5554a1d 22 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( 1  <_  i  ->  ( i  <_  (
( P  -  1 )  /  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) ) )
5655imp32 257 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) )
5722, 56sylbi 121 . . . . 5  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( i  x.  2 )  <  P
) )
5857impcom 125 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  <  P )
59 modqid 10538 . . . 4  |-  ( ( ( ( i  x.  2 )  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
( i  x.  2 )  /\  ( i  x.  2 )  < 
P ) )  -> 
( ( i  x.  2 )  mod  P
)  =  ( i  x.  2 ) )
607, 9, 21, 58, 59syl22anc 1253 . . 3  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( i  x.  2 )  mod  P )  =  ( i  x.  2 ) )
6160eqcomd 2215 . 2  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  =  ( ( i  x.  2 )  mod 
P ) )
6261ralrimiva 2583 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   A.wral 2488   class class class wbr 4062  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967   1c1 7968    x. cmul 7972    < clt 8149    <_ cle 8150    - cmin 8285   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   ZZcz 9414   QQcq 9782   ...cfz 10172    mod cmo 10511    || cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fl 10457  df-mod 10512
This theorem is referenced by:  2lgslem1a  15732
  Copyright terms: Public domain W3C validator