| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a1 | Unicode version | ||
| Description: Lemma 1 for 2lgslem1a 15609. (Contributed by AV, 16-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1a1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10154 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | 2z 9407 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | 2, 4 | zmulcld 9508 |
. . . . 5
|
| 6 | zq 9754 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | nnq 9761 |
. . . . 5
| |
| 9 | 8 | ad2antrr 488 |
. . . 4
|
| 10 | elfznn 10183 |
. . . . . 6
| |
| 11 | nnre 9050 |
. . . . . . 7
| |
| 12 | nnnn0 9309 |
. . . . . . . 8
| |
| 13 | 12 | nn0ge0d 9358 |
. . . . . . 7
|
| 14 | 2re 9113 |
. . . . . . . . 9
| |
| 15 | 0le2 9133 |
. . . . . . . . 9
| |
| 16 | 14, 15 | pm3.2i 272 |
. . . . . . . 8
|
| 17 | 16 | a1i 9 |
. . . . . . 7
|
| 18 | mulge0 8699 |
. . . . . . 7
| |
| 19 | 11, 13, 17, 18 | syl21anc 1249 |
. . . . . 6
|
| 20 | 10, 19 | syl 14 |
. . . . 5
|
| 21 | 20 | adantl 277 |
. . . 4
|
| 22 | elfz2 10144 |
. . . . . 6
| |
| 23 | zre 9383 |
. . . . . . . . . . 11
| |
| 24 | 23 | 3ad2ant3 1023 |
. . . . . . . . . 10
|
| 25 | zre 9383 |
. . . . . . . . . . 11
| |
| 26 | 25 | 3ad2ant2 1022 |
. . . . . . . . . 10
|
| 27 | 2pos 9134 |
. . . . . . . . . . . 12
| |
| 28 | 14, 27 | pm3.2i 272 |
. . . . . . . . . . 11
|
| 29 | 28 | a1i 9 |
. . . . . . . . . 10
|
| 30 | lemul1 8673 |
. . . . . . . . . 10
| |
| 31 | 24, 26, 29, 30 | syl3anc 1250 |
. . . . . . . . 9
|
| 32 | nncn 9051 |
. . . . . . . . . . . . . . . . 17
| |
| 33 | peano2cnm 8345 |
. . . . . . . . . . . . . . . . 17
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . . . . . . . . . 16
|
| 35 | 2cnd 9116 |
. . . . . . . . . . . . . . . 16
| |
| 36 | 2ap0 9136 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | 36 | a1i 9 |
. . . . . . . . . . . . . . . 16
|
| 38 | 34, 35, 37 | divcanap1d 8871 |
. . . . . . . . . . . . . . 15
|
| 39 | 38 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 40 | 39 | adantl 277 |
. . . . . . . . . . . . 13
|
| 41 | 40 | breq2d 4059 |
. . . . . . . . . . . 12
|
| 42 | id 19 |
. . . . . . . . . . . . . . . 16
| |
| 43 | 3 | a1i 9 |
. . . . . . . . . . . . . . . 16
|
| 44 | 42, 43 | zmulcld 9508 |
. . . . . . . . . . . . . . 15
|
| 45 | 44 | 3ad2ant3 1023 |
. . . . . . . . . . . . . 14
|
| 46 | nnz 9398 |
. . . . . . . . . . . . . . 15
| |
| 47 | 46 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 48 | zltlem1 9437 |
. . . . . . . . . . . . . 14
| |
| 49 | 45, 47, 48 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 50 | 49 | biimprd 158 |
. . . . . . . . . . . 12
|
| 51 | 41, 50 | sylbid 150 |
. . . . . . . . . . 11
|
| 52 | 51 | ex 115 |
. . . . . . . . . 10
|
| 53 | 52 | com23 78 |
. . . . . . . . 9
|
| 54 | 31, 53 | sylbid 150 |
. . . . . . . 8
|
| 55 | 54 | a1d 22 |
. . . . . . 7
|
| 56 | 55 | imp32 257 |
. . . . . 6
|
| 57 | 22, 56 | sylbi 121 |
. . . . 5
|
| 58 | 57 | impcom 125 |
. . . 4
|
| 59 | modqid 10501 |
. . . 4
| |
| 60 | 7, 9, 21, 58, 59 | syl22anc 1251 |
. . 3
|
| 61 | 60 | eqcomd 2212 |
. 2
|
| 62 | 61 | ralrimiva 2580 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fl 10420 df-mod 10475 |
| This theorem is referenced by: 2lgslem1a 15609 |
| Copyright terms: Public domain | W3C validator |