| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a1 | Unicode version | ||
| Description: Lemma 1 for 2lgslem1a 15329. (Contributed by AV, 16-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| 2lgslem1a1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzelz 10100 | 
. . . . . . 7
 | |
| 2 | 1 | adantl 277 | 
. . . . . 6
 | 
| 3 | 2z 9354 | 
. . . . . . 7
 | |
| 4 | 3 | a1i 9 | 
. . . . . 6
 | 
| 5 | 2, 4 | zmulcld 9454 | 
. . . . 5
 | 
| 6 | zq 9700 | 
. . . . 5
 | |
| 7 | 5, 6 | syl 14 | 
. . . 4
 | 
| 8 | nnq 9707 | 
. . . . 5
 | |
| 9 | 8 | ad2antrr 488 | 
. . . 4
 | 
| 10 | elfznn 10129 | 
. . . . . 6
 | |
| 11 | nnre 8997 | 
. . . . . . 7
 | |
| 12 | nnnn0 9256 | 
. . . . . . . 8
 | |
| 13 | 12 | nn0ge0d 9305 | 
. . . . . . 7
 | 
| 14 | 2re 9060 | 
. . . . . . . . 9
 | |
| 15 | 0le2 9080 | 
. . . . . . . . 9
 | |
| 16 | 14, 15 | pm3.2i 272 | 
. . . . . . . 8
 | 
| 17 | 16 | a1i 9 | 
. . . . . . 7
 | 
| 18 | mulge0 8646 | 
. . . . . . 7
 | |
| 19 | 11, 13, 17, 18 | syl21anc 1248 | 
. . . . . 6
 | 
| 20 | 10, 19 | syl 14 | 
. . . . 5
 | 
| 21 | 20 | adantl 277 | 
. . . 4
 | 
| 22 | elfz2 10090 | 
. . . . . 6
 | |
| 23 | zre 9330 | 
. . . . . . . . . . 11
 | |
| 24 | 23 | 3ad2ant3 1022 | 
. . . . . . . . . 10
 | 
| 25 | zre 9330 | 
. . . . . . . . . . 11
 | |
| 26 | 25 | 3ad2ant2 1021 | 
. . . . . . . . . 10
 | 
| 27 | 2pos 9081 | 
. . . . . . . . . . . 12
 | |
| 28 | 14, 27 | pm3.2i 272 | 
. . . . . . . . . . 11
 | 
| 29 | 28 | a1i 9 | 
. . . . . . . . . 10
 | 
| 30 | lemul1 8620 | 
. . . . . . . . . 10
 | |
| 31 | 24, 26, 29, 30 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 32 | nncn 8998 | 
. . . . . . . . . . . . . . . . 17
 | |
| 33 | peano2cnm 8292 | 
. . . . . . . . . . . . . . . . 17
 | |
| 34 | 32, 33 | syl 14 | 
. . . . . . . . . . . . . . . 16
 | 
| 35 | 2cnd 9063 | 
. . . . . . . . . . . . . . . 16
 | |
| 36 | 2ap0 9083 | 
. . . . . . . . . . . . . . . . 17
 | |
| 37 | 36 | a1i 9 | 
. . . . . . . . . . . . . . . 16
 | 
| 38 | 34, 35, 37 | divcanap1d 8818 | 
. . . . . . . . . . . . . . 15
 | 
| 39 | 38 | adantr 276 | 
. . . . . . . . . . . . . 14
 | 
| 40 | 39 | adantl 277 | 
. . . . . . . . . . . . 13
 | 
| 41 | 40 | breq2d 4045 | 
. . . . . . . . . . . 12
 | 
| 42 | id 19 | 
. . . . . . . . . . . . . . . 16
 | |
| 43 | 3 | a1i 9 | 
. . . . . . . . . . . . . . . 16
 | 
| 44 | 42, 43 | zmulcld 9454 | 
. . . . . . . . . . . . . . 15
 | 
| 45 | 44 | 3ad2ant3 1022 | 
. . . . . . . . . . . . . 14
 | 
| 46 | nnz 9345 | 
. . . . . . . . . . . . . . 15
 | |
| 47 | 46 | adantr 276 | 
. . . . . . . . . . . . . 14
 | 
| 48 | zltlem1 9383 | 
. . . . . . . . . . . . . 14
 | |
| 49 | 45, 47, 48 | syl2an 289 | 
. . . . . . . . . . . . 13
 | 
| 50 | 49 | biimprd 158 | 
. . . . . . . . . . . 12
 | 
| 51 | 41, 50 | sylbid 150 | 
. . . . . . . . . . 11
 | 
| 52 | 51 | ex 115 | 
. . . . . . . . . 10
 | 
| 53 | 52 | com23 78 | 
. . . . . . . . 9
 | 
| 54 | 31, 53 | sylbid 150 | 
. . . . . . . 8
 | 
| 55 | 54 | a1d 22 | 
. . . . . . 7
 | 
| 56 | 55 | imp32 257 | 
. . . . . 6
 | 
| 57 | 22, 56 | sylbi 121 | 
. . . . 5
 | 
| 58 | 57 | impcom 125 | 
. . . 4
 | 
| 59 | modqid 10441 | 
. . . 4
 | |
| 60 | 7, 9, 21, 58, 59 | syl22anc 1250 | 
. . 3
 | 
| 61 | 60 | eqcomd 2202 | 
. 2
 | 
| 62 | 61 | ralrimiva 2570 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fl 10360 df-mod 10415 | 
| This theorem is referenced by: 2lgslem1a 15329 | 
| Copyright terms: Public domain | W3C validator |