ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1a1 Unicode version

Theorem 2lgslem1a1 15327
Description: Lemma 1 for 2lgslem1a 15329. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) )
Distinct variable group:    P, i

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 elfzelz 10100 . . . . . . 7  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  e.  ZZ )
21adantl 277 . . . . . 6  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  i  e.  ZZ )
3 2z 9354 . . . . . . 7  |-  2  e.  ZZ
43a1i 9 . . . . . 6  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
52, 4zmulcld 9454 . . . . 5  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  e.  ZZ )
6 zq 9700 . . . . 5  |-  ( ( i  x.  2 )  e.  ZZ  ->  (
i  x.  2 )  e.  QQ )
75, 6syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  e.  QQ )
8 nnq 9707 . . . . 5  |-  ( P  e.  NN  ->  P  e.  QQ )
98ad2antrr 488 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  QQ )
10 elfznn 10129 . . . . . 6  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  e.  NN )
11 nnre 8997 . . . . . . 7  |-  ( i  e.  NN  ->  i  e.  RR )
12 nnnn0 9256 . . . . . . . 8  |-  ( i  e.  NN  ->  i  e.  NN0 )
1312nn0ge0d 9305 . . . . . . 7  |-  ( i  e.  NN  ->  0  <_  i )
14 2re 9060 . . . . . . . . 9  |-  2  e.  RR
15 0le2 9080 . . . . . . . . 9  |-  0  <_  2
1614, 15pm3.2i 272 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <_  2 )
1716a1i 9 . . . . . . 7  |-  ( i  e.  NN  ->  (
2  e.  RR  /\  0  <_  2 ) )
18 mulge0 8646 . . . . . . 7  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( 2  e.  RR  /\  0  <_  2 ) )  ->  0  <_  ( i  x.  2 ) )
1911, 13, 17, 18syl21anc 1248 . . . . . 6  |-  ( i  e.  NN  ->  0  <_  ( i  x.  2 ) )
2010, 19syl 14 . . . . 5  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  0  <_  ( i  x.  2 ) )
2120adantl 277 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  ( i  x.  2 ) )
22 elfz2 10090 . . . . . 6  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  <->  ( (
1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
23 zre 9330 . . . . . . . . . . 11  |-  ( i  e.  ZZ  ->  i  e.  RR )
24233ad2ant3 1022 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  i  e.  RR )
25 zre 9330 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
( P  -  1 )  /  2 )  e.  RR )
26253ad2ant2 1021 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( P  - 
1 )  /  2
)  e.  RR )
27 2pos 9081 . . . . . . . . . . . 12  |-  0  <  2
2814, 27pm3.2i 272 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( 2  e.  RR  /\  0  <  2 ) )
30 lemul1 8620 . . . . . . . . . 10  |-  ( ( i  e.  RR  /\  ( ( P  - 
1 )  /  2
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( i  <_  ( ( P  - 
1 )  /  2
)  <->  ( i  x.  2 )  <_  (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
3124, 26, 29, 30syl3anc 1249 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  <_  (
( P  -  1 )  /  2 )  <-> 
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 ) ) )
32 nncn 8998 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  NN  ->  P  e.  CC )
33 peano2cnm 8292 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  CC  ->  ( P  -  1 )  e.  CC )
3432, 33syl 14 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  CC )
35 2cnd 9063 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  2  e.  CC )
36 2ap0 9083 . . . . . . . . . . . . . . . . 17  |-  2 #  0
3736a1i 9 . . . . . . . . . . . . . . . 16  |-  ( P  e.  NN  ->  2 #  0 )
3834, 35, 37divcanap1d 8818 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
3938adantr 276 . . . . . . . . . . . . . 14  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( P  -  1 )  /  2 )  x.  2 )  =  ( P  -  1 ) )
4039adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( ( P  - 
1 )  /  2
)  x.  2 )  =  ( P  - 
1 ) )
4140breq2d 4045 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  <->  ( i  x.  2 )  <_  ( P  -  1 ) ) )
42 id 19 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ZZ  ->  i  e.  ZZ )
433a1i 9 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ZZ  ->  2  e.  ZZ )
4442, 43zmulcld 9454 . . . . . . . . . . . . . . 15  |-  ( i  e.  ZZ  ->  (
i  x.  2 )  e.  ZZ )
45443ad2ant3 1022 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  x.  2 )  e.  ZZ )
46 nnz 9345 . . . . . . . . . . . . . . 15  |-  ( P  e.  NN  ->  P  e.  ZZ )
4746adantr 276 . . . . . . . . . . . . . 14  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  P  e.  ZZ )
48 zltlem1 9383 . . . . . . . . . . . . . 14  |-  ( ( ( i  x.  2 )  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( i  x.  2 )  <  P  <->  ( i  x.  2 )  <_  ( P  - 
1 ) ) )
4945, 47, 48syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <  P  <->  ( i  x.  2 )  <_  ( P  -  1 ) ) )
5049biimprd 158 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( P  -  1 )  -> 
( i  x.  2 )  <  P ) )
5141, 50sylbid 150 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  -> 
( i  x.  2 )  <  P ) )
5251ex 115 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  (
( i  x.  2 )  <_  ( (
( P  -  1 )  /  2 )  x.  2 )  -> 
( i  x.  2 )  <  P ) ) )
5352com23 78 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( i  x.  2 )  <_  (
( ( P  - 
1 )  /  2
)  x.  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) )
5431, 53sylbid 150 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  <_  (
( P  -  1 )  /  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) )
5554a1d 22 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  ->  ( 1  <_  i  ->  ( i  <_  (
( P  -  1 )  /  2 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) ) ) )
5655imp32 257 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( i  x.  2 )  <  P ) )
5722, 56sylbi 121 . . . . 5  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( i  x.  2 )  <  P
) )
5857impcom 125 . . . 4  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  <  P )
59 modqid 10441 . . . 4  |-  ( ( ( ( i  x.  2 )  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
( i  x.  2 )  /\  ( i  x.  2 )  < 
P ) )  -> 
( ( i  x.  2 )  mod  P
)  =  ( i  x.  2 ) )
607, 9, 21, 58, 59syl22anc 1250 . . 3  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( i  x.  2 )  mod  P )  =  ( i  x.  2 ) )
6160eqcomd 2202 . 2  |-  ( ( ( P  e.  NN  /\ 
-.  2  ||  P
)  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  =  ( ( i  x.  2 )  mod 
P ) )
6261ralrimiva 2570 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   QQcq 9693   ...cfz 10083    mod cmo 10414    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415
This theorem is referenced by:  2lgslem1a  15329
  Copyright terms: Public domain W3C validator