ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3a GIF version

Theorem 2lgslem3a 15737
Description: Lemma for 2lgslem3a1 15741. (Contributed by AV, 14-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))

Proof of Theorem 2lgslem3a
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 5981 . . . . 5 (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) − 1))
32oveq1d 5989 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 1) − 1) / 2))
4 fvoveq1 5997 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 1) / 4)))
53, 4oveq12d 5992 . . 3 (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
61, 5eqtrid 2254 . 2 (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
7 8nn0 9360 . . . . . . . . . 10 8 ∈ ℕ0
87a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 19 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 9395 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 9392 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 pncan1 8491 . . . . . . 7 ((8 · 𝐾) ∈ ℂ → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1311, 12syl 14 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1413oveq1d 5989 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = ((8 · 𝐾) / 2))
15 4cn 9156 . . . . . . . . . . 11 4 ∈ ℂ
16 2cn 9149 . . . . . . . . . . 11 2 ∈ ℂ
17 4t2e8 9237 . . . . . . . . . . 11 (4 · 2) = 8
1815, 16, 17mulcomli 8121 . . . . . . . . . 10 (2 · 4) = 8
1918eqcomi 2213 . . . . . . . . 9 8 = (2 · 4)
2019a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 8 = (2 · 4))
2120oveq1d 5989 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((2 · 4) · 𝐾))
2216a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
2315a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
24 nn0cn 9347 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2522, 23, 24mulassd 8138 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 4) · 𝐾) = (2 · (4 · 𝐾)))
2621, 25eqtrd 2242 . . . . . 6 (𝐾 ∈ ℕ0 → (8 · 𝐾) = (2 · (4 · 𝐾)))
2726oveq1d 5989 . . . . 5 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 2) = ((2 · (4 · 𝐾)) / 2))
28 4nn0 9356 . . . . . . . . 9 4 ∈ ℕ0
2928a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3029, 9nn0mulcld 9395 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3130nn0cnd 9392 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
32 2ap0 9171 . . . . . . 7 2 # 0
3332a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → 2 # 0)
3431, 22, 33divcanap3d 8910 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾))
3514, 27, 343eqtrd 2246 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = (4 · 𝐾))
36 1cnd 8130 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
37 4ap0 9177 . . . . . . . . 9 4 # 0
3837a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 # 0)
3911, 36, 23, 38divdirapd 8944 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
40 8cn 9164 . . . . . . . . . . 11 8 ∈ ℂ
4140a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
4241, 24, 23, 38div23apd 8943 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4317eqcomi 2213 . . . . . . . . . . . . 13 8 = (4 · 2)
4443oveq1i 5984 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
4516, 15, 37divcanap3i 8873 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
4644, 45eqtri 2230 . . . . . . . . . . 11 (8 / 4) = 2
4746a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
4847oveq1d 5989 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
4942, 48eqtrd 2242 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
5049oveq1d 5989 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4)))
5139, 50eqtrd 2242 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = ((2 · 𝐾) + (1 / 4)))
5251fveq2d 5607 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 · 𝐾) + (1 / 4))))
53 1lt4 9253 . . . . . 6 1 < 4
54 2nn0 9354 . . . . . . . . . 10 2 ∈ ℕ0
5554a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
5655, 9nn0mulcld 9395 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
5756nn0zd 9535 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
58 1nn0 9353 . . . . . . . 8 1 ∈ ℕ0
5958a1i 9 . . . . . . 7 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
60 4nn 9242 . . . . . . . 8 4 ∈ ℕ
6160a1i 9 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
62 adddivflid 10479 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6357, 59, 61, 62syl3anc 1252 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6453, 63mpbii 148 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))
6552, 64eqtrd 2242 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾))
6635, 65oveq12d 5992 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾)))
67 2t2e4 9233 . . . . . . . 8 (2 · 2) = 4
6867eqcomi 2213 . . . . . . 7 4 = (2 · 2)
6968a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
7069oveq1d 5989 . . . . 5 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
7122, 22, 24mulassd 8138 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
7270, 71eqtrd 2242 . . . 4 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
7372oveq1d 5989 . . 3 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
7456nn0cnd 9392 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
75 2txmxeqx 9210 . . . 4 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7674, 75syl 14 . . 3 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7766, 73, 763eqtrd 2246 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾))
786, 77sylan9eqr 2264 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cmin 8285   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  4c4 9131  8c8 9135  0cn0 9337  cz 9414  cfl 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457
This theorem is referenced by:  2lgslem3a1  15741
  Copyright terms: Public domain W3C validator