ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqleminfi Unicode version

Theorem 4sqleminfi 12835
Description: Lemma for 4sq 12848.  A  i^i  ran 
F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqleminfi  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    ph, v
Allowed substitution hints:    A( u, m)    P( v)    F( v, u, m)    N( v)

Proof of Theorem 4sqleminfi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.n . . 3  |-  ( ph  ->  N  e.  NN )
2 4sqlemafi.p . . 3  |-  ( ph  ->  P  e.  NN )
3 4sqlemafi.a . . 3  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
41, 2, 34sqlemafi 12833 . 2  |-  ( ph  ->  A  e.  Fin )
5 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
6 elfzelz 10182 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
76ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  m  e.  ZZ )
8 zsqcl 10792 . . . . . . . . . . . . . . 15  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( m ^ 2 )  e.  ZZ )
102ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  P  e.  NN )
119, 10zmodcld 10527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  NN0 )
1211nn0zd 9528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
135, 12eqeltrd 2284 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
1413rexlimdva2 2628 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
1514abssdv 3275 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
163, 15eqsstrid 3247 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
1716sselda 3201 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ZZ )
182ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  NN )
1918nnzd 9529 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  ZZ )
20 peano2zm 9445 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
2216sselda 3201 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
2322adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  v  e.  ZZ )
2421, 23zsubcld 9535 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
25 zdceq 9483 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( ( P  - 
1 )  -  v
)  e.  ZZ )  -> DECID 
x  =  ( ( P  -  1 )  -  v ) )
2617, 24, 25syl2an2r 595 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  -> DECID  x  =  (
( P  -  1 )  -  v ) )
2726ralrimiva 2581 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. v  e.  A DECID  x  =  (
( P  -  1 )  -  v ) )
28 finexdc 7025 . . . . 5  |-  ( ( A  e.  Fin  /\  A. v  e.  A DECID  x  =  ( ( P  - 
1 )  -  v
) )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
294, 27, 28syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  A )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
30 4sqlemffi.f . . . . . . 7  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
3130elrnmpt 4946 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) ) )
3231elv 2780 . . . . 5  |-  ( x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  - 
1 )  -  v
) )
3332dcbii 842 . . . 4  |-  (DECID  x  e. 
ran  F  <-> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
3429, 33sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  A )  -> DECID  x  e.  ran  F )
3534ralrimiva 2581 . 2  |-  ( ph  ->  A. x  e.  A DECID  x  e.  ran  F )
36 infidc 7062 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  x  e. 
ran  F )  -> 
( A  i^i  ran  F )  e.  Fin )
374, 35, 36syl2anc 411 1  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    i^i cin 3173    |-> cmpt 4121   ran crn 4694  (class class class)co 5967   Fincfn 6850   0cc0 7960   1c1 7961    - cmin 8278   NNcn 9071   2c2 9122   ZZcz 9407   ...cfz 10165    mod cmo 10504   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  4sqlem11  12839  4sqlem12  12840
  Copyright terms: Public domain W3C validator