ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqleminfi Unicode version

Theorem 4sqleminfi 12753
Description: Lemma for 4sq 12766.  A  i^i  ran 
F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqleminfi  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    ph, v
Allowed substitution hints:    A( u, m)    P( v)    F( v, u, m)    N( v)

Proof of Theorem 4sqleminfi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.n . . 3  |-  ( ph  ->  N  e.  NN )
2 4sqlemafi.p . . 3  |-  ( ph  ->  P  e.  NN )
3 4sqlemafi.a . . 3  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
41, 2, 34sqlemafi 12751 . 2  |-  ( ph  ->  A  e.  Fin )
5 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
6 elfzelz 10149 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
76ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  m  e.  ZZ )
8 zsqcl 10757 . . . . . . . . . . . . . . 15  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( m ^ 2 )  e.  ZZ )
102ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  P  e.  NN )
119, 10zmodcld 10492 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  NN0 )
1211nn0zd 9495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
135, 12eqeltrd 2282 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
1413rexlimdva2 2626 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
1514abssdv 3267 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
163, 15eqsstrid 3239 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
1716sselda 3193 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ZZ )
182ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  NN )
1918nnzd 9496 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  ZZ )
20 peano2zm 9412 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
2216sselda 3193 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
2322adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  v  e.  ZZ )
2421, 23zsubcld 9502 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
25 zdceq 9450 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( ( P  - 
1 )  -  v
)  e.  ZZ )  -> DECID 
x  =  ( ( P  -  1 )  -  v ) )
2617, 24, 25syl2an2r 595 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  -> DECID  x  =  (
( P  -  1 )  -  v ) )
2726ralrimiva 2579 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. v  e.  A DECID  x  =  (
( P  -  1 )  -  v ) )
28 finexdc 7001 . . . . 5  |-  ( ( A  e.  Fin  /\  A. v  e.  A DECID  x  =  ( ( P  - 
1 )  -  v
) )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
294, 27, 28syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  A )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
30 4sqlemffi.f . . . . . . 7  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
3130elrnmpt 4928 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) ) )
3231elv 2776 . . . . 5  |-  ( x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  - 
1 )  -  v
) )
3332dcbii 842 . . . 4  |-  (DECID  x  e. 
ran  F  <-> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
3429, 33sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  A )  -> DECID  x  e.  ran  F )
3534ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  A DECID  x  e.  ran  F )
36 infidc 7038 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  x  e. 
ran  F )  -> 
( A  i^i  ran  F )  e.  Fin )
374, 35, 36syl2anc 411 1  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    i^i cin 3165    |-> cmpt 4106   ran crn 4677  (class class class)co 5946   Fincfn 6829   0cc0 7927   1c1 7928    - cmin 8245   NNcn 9038   2c2 9089   ZZcz 9374   ...cfz 10132    mod cmo 10469   ^cexp 10685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-er 6622  df-en 6830  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686
This theorem is referenced by:  4sqlem11  12757  4sqlem12  12758
  Copyright terms: Public domain W3C validator