ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqleminfi Unicode version

Theorem 4sqleminfi 12566
Description: Lemma for 4sq 12579.  A  i^i  ran 
F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqleminfi  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    ph, v
Allowed substitution hints:    A( u, m)    P( v)    F( v, u, m)    N( v)

Proof of Theorem 4sqleminfi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.n . . 3  |-  ( ph  ->  N  e.  NN )
2 4sqlemafi.p . . 3  |-  ( ph  ->  P  e.  NN )
3 4sqlemafi.a . . 3  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
41, 2, 34sqlemafi 12564 . 2  |-  ( ph  ->  A  e.  Fin )
5 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
6 elfzelz 10100 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
76ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  m  e.  ZZ )
8 zsqcl 10702 . . . . . . . . . . . . . . 15  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( m ^ 2 )  e.  ZZ )
102ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  P  e.  NN )
119, 10zmodcld 10437 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  NN0 )
1211nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
135, 12eqeltrd 2273 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
1413rexlimdva2 2617 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
1514abssdv 3257 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
163, 15eqsstrid 3229 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
1716sselda 3183 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ZZ )
182ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  NN )
1918nnzd 9447 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  P  e.  ZZ )
20 peano2zm 9364 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
2216sselda 3183 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
2322adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  v  e.  ZZ )
2421, 23zsubcld 9453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
25 zdceq 9401 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( ( P  - 
1 )  -  v
)  e.  ZZ )  -> DECID 
x  =  ( ( P  -  1 )  -  v ) )
2617, 24, 25syl2an2r 595 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  v  e.  A )  -> DECID  x  =  (
( P  -  1 )  -  v ) )
2726ralrimiva 2570 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. v  e.  A DECID  x  =  (
( P  -  1 )  -  v ) )
28 finexdc 6963 . . . . 5  |-  ( ( A  e.  Fin  /\  A. v  e.  A DECID  x  =  ( ( P  - 
1 )  -  v
) )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
294, 27, 28syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  A )  -> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
30 4sqlemffi.f . . . . . . 7  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
3130elrnmpt 4915 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) ) )
3231elv 2767 . . . . 5  |-  ( x  e.  ran  F  <->  E. v  e.  A  x  =  ( ( P  - 
1 )  -  v
) )
3332dcbii 841 . . . 4  |-  (DECID  x  e. 
ran  F  <-> DECID  E. v  e.  A  x  =  ( ( P  -  1 )  -  v ) )
3429, 33sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  A )  -> DECID  x  e.  ran  F )
3534ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  A DECID  x  e.  ran  F )
36 infidc 7000 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  x  e. 
ran  F )  -> 
( A  i^i  ran  F )  e.  Fin )
374, 35, 36syl2anc 411 1  |-  ( ph  ->  ( A  i^i  ran  F )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    i^i cin 3156    |-> cmpt 4094   ran crn 4664  (class class class)co 5922   Fincfn 6799   0cc0 7879   1c1 7880    - cmin 8197   NNcn 8990   2c2 9041   ZZcz 9326   ...cfz 10083    mod cmo 10414   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  4sqlem11  12570  4sqlem12  12571
  Copyright terms: Public domain W3C validator