ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absef GIF version

Theorem absef 11512
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
Assertion
Ref Expression
absef (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))

Proof of Theorem absef
StepHypRef Expression
1 replim 10663 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21fveq2d 5433 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 10657 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 7818 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 7739 . . . . . . 7 i ∈ ℂ
6 imcl 10658 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 7818 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 7771 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 411 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 efadd 11418 . . . . . 6 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
114, 9, 10syl2anc 409 . . . . 5 (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
122, 11eqtrd 2173 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
1312fveq2d 5433 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))))
143reefcld 11412 . . . . 5 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ)
1514recnd 7818 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ)
16 efcl 11407 . . . . 5 ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
179, 16syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
1815, 17absmuld 10998 . . 3 (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))))
19 absefi 11511 . . . . 5 ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
206, 19syl 14 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
2120oveq2d 5798 . . 3 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2213, 18, 213eqtrd 2177 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2315abscld 10985 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ)
2423recnd 7818 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ)
2524mulid1d 7807 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴))))
26 efgt0 11427 . . . . 5 ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴)))
273, 26syl 14 . . . 4 (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴)))
28 0re 7790 . . . . 5 0 ∈ ℝ
29 ltle 7875 . . . . 5 ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3028, 14, 29sylancr 411 . . . 4 (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3127, 30mpd 13 . . 3 (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴)))
3214, 31absidd 10971 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴)))
3322, 25, 323eqtrd 2177 1 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645  ici 7646   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cre 10644  cim 10645  abscabs 10801  expce 11385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394
This theorem is referenced by:  absefib  11513  abscxp  13043  rpabscxpbnd  13067
  Copyright terms: Public domain W3C validator