ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzcl GIF version

Theorem gsumfzcl 13061
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
Hypotheses
Ref Expression
gsumcl.b 𝐵 = (Base‘𝐺)
gsumcl.z 0 = (0g𝐺)
gsumfzcl.g (𝜑𝐺 ∈ Mnd)
gsumfzcl.m (𝜑𝑀 ∈ ℤ)
gsumfzcl.n (𝜑𝑁 ∈ ℤ)
gsumfzcl.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumfzcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 gsumcl.z . . . . . 6 0 = (0g𝐺)
3 eqid 2193 . . . . . 6 (+g𝐺) = (+g𝐺)
4 gsumfzcl.g . . . . . 6 (𝜑𝐺 ∈ Mnd)
5 gsumfzcl.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 gsumfzcl.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
7 gsumfzcl.f . . . . . 6 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
81, 2, 3, 4, 5, 6, 7gsumfzval 12964 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
98adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
10 simpr 110 . . . . 5 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
1110iftrued 3564 . . . 4 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = 0 )
129, 11eqtrd 2226 . . 3 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 )
131, 2mndidcl 13001 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
144, 13syl 14 . . . 4 (𝜑0𝐵)
1514adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → 0𝐵)
1612, 15eqeltrd 2270 . 2 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝐵)
178adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
18 simpr 110 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
1918iffalsed 3567 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
2017, 19eqtrd 2226 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
215adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
226adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
2321zred 9429 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
2422zred 9429 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
2523, 24, 18nltled 8130 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
26 eluz2 9588 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2721, 22, 25, 26syl3anbrc 1183 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
285, 6fzfigd 10492 . . . . . . 7 (𝜑 → (𝑀...𝑁) ∈ Fin)
297, 28fexd 5780 . . . . . 6 (𝜑𝐹 ∈ V)
3029ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → 𝐹 ∈ V)
31 vex 2763 . . . . 5 𝑥 ∈ V
32 fvexg 5565 . . . . 5 ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹𝑥) ∈ V)
3330, 31, 32sylancl 413 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
347ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵)
35 simpr 110 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
3634, 35ffvelcdmd 5686 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
374ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
38 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
39 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
401, 3mndcl 12994 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
4137, 38, 39, 40syl3anc 1249 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
42 ssv 3201 . . . . 5 𝐵 ⊆ V
4342a1i 9 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐵 ⊆ V)
44 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V)
45 plusgslid 12720 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4645slotex 12635 . . . . . . 7 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
474, 46syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
4847ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g𝐺) ∈ V)
49 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
50 ovexg 5944 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
5144, 48, 49, 50syl3anc 1249 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝐺)𝑦) ∈ V)
5227, 33, 36, 41, 43, 51seq3clss 10532 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g𝐺), 𝐹)‘𝑁) ∈ 𝐵)
5320, 52eqeltrd 2270 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝐵)
54 zdclt 9384 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
556, 5, 54syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
56 exmiddc 837 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
5755, 56syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
5816, 53, 57mpjaodan 799 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  ifcif 3557   class class class wbr 4029  wf 5242  cfv 5246  (class class class)co 5910  Fincfn 6785   < clt 8044  cle 8045  cz 9307  cuz 9582  ...cfz 10064  seqcseq 10508  Basecbs 12608  +gcplusg 12685  0gc0g 12857   Σg cgsu 12858  Mndcmnd 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-2 9031  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509  df-ndx 12611  df-slot 12612  df-base 12614  df-plusg 12698  df-0g 12859  df-igsum 12860  df-mgm 12929  df-sgrp 12975  df-mnd 12988
This theorem is referenced by:  lgseisenlem3  15136
  Copyright terms: Public domain W3C validator