| Step | Hyp | Ref
| Expression |
| 1 | | gsumcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | gsumcl.z |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 4 | | gsumfzcl.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | | gsumfzcl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | | gsumfzcl.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | | gsumfzcl.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | gsumfzval 13044 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 9 | 8 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 10 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
| 11 | 10 | iftrued 3569 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = 0 ) |
| 12 | 9, 11 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 ) |
| 13 | 1, 2 | mndidcl 13081 |
. . . . 5
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 14 | 4, 13 | syl 14 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐵) |
| 15 | 14 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 0 ∈ 𝐵) |
| 16 | 12, 15 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 17 | 8 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 18 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) |
| 19 | 18 | iffalsed 3572 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 20 | 17, 19 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 21 | 5 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 22 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 23 | 21 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 24 | 22 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 25 | 23, 24, 18 | nltled 8149 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
| 26 | | eluz2 9609 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 27 | 21, 22, 25, 26 | syl3anbrc 1183 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 28 | 5, 6 | fzfigd 10525 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 29 | 7, 28 | fexd 5793 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
| 30 | 29 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐹 ∈ V) |
| 31 | | vex 2766 |
. . . . 5
⊢ 𝑥 ∈ V |
| 32 | | fvexg 5578 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) |
| 33 | 30, 31, 32 | sylancl 413 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 34 | 7 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 35 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 36 | 34, 35 | ffvelcdmd 5699 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝐵) |
| 37 | 4 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 38 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 39 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 40 | 1, 3 | mndcl 13074 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 41 | 37, 38, 39, 40 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 42 | | ssv 3206 |
. . . . 5
⊢ 𝐵 ⊆ V |
| 43 | 42 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐵 ⊆ V) |
| 44 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑥 ∈ V) |
| 45 | | plusgslid 12800 |
. . . . . . . 8
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 46 | 45 | slotex 12715 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd →
(+g‘𝐺)
∈ V) |
| 47 | 4, 46 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 48 | 47 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (+g‘𝐺) ∈ V) |
| 49 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V) |
| 50 | | ovexg 5957 |
. . . . 5
⊢ ((𝑥 ∈ V ∧
(+g‘𝐺)
∈ V ∧ 𝑦 ∈ V)
→ (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 51 | 44, 48, 49, 50 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 52 | 27, 33, 36, 41, 43, 51 | seq3clss 10565 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g‘𝐺), 𝐹)‘𝑁) ∈ 𝐵) |
| 53 | 20, 52 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 54 | | zdclt 9405 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
| 55 | 6, 5, 54 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 56 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 57 | 55, 56 | syl 14 |
. 2
⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 58 | 16, 53, 57 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |