| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imcl | GIF version | ||
| Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| imcl | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imre 11348 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
| 2 | negicn 8335 | . . . 4 ⊢ -i ∈ ℂ | |
| 3 | mulcl 8114 | . . . 4 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
| 5 | recl 11350 | . . 3 ⊢ ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) |
| 7 | 1, 6 | eqeltrd 2306 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 ℝcr 7986 ici 7989 · cmul 7992 -cneg 8306 ℜcre 11337 ℑcim 11338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-2 9157 df-cj 11339 df-re 11340 df-im 11341 |
| This theorem is referenced by: imf 11353 remim 11357 mulreap 11361 cjreb 11363 recj 11364 reneg 11365 readd 11366 remullem 11368 remul2 11370 imcj 11372 imneg 11373 imadd 11374 imsub 11375 immul2 11377 imdivap 11378 cjcj 11380 cjadd 11381 ipcnval 11383 cjmulval 11385 cjmulge0 11386 cjneg 11387 imval2 11391 cnrecnv 11407 imcli 11409 imcld 11436 cnreim 11475 abs00ap 11559 absrele 11580 efeul 12231 absef 12267 absefib 12268 efieq1re 12269 |
| Copyright terms: Public domain | W3C validator |