ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quscrng GIF version

Theorem quscrng 14032
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
Hypotheses
Ref Expression
quscrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
quscrng.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
quscrng ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)

Proof of Theorem quscrng
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 13507 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpr 110 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆𝐼)
3 quscrng.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
43crng2idl 14030 . . . . 5 (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
54adantr 276 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝐼 = (2Ideal‘𝑅))
62, 5eleqtrd 2272 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (2Ideal‘𝑅))
7 quscrng.u . . . 4 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 eqid 2193 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
97, 8qusring 14026 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring)
101, 6, 9syl2an2r 595 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
117a1i 9 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
12 eqidd 2194 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
13 eqgex 13294 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) ∈ V)
141adantr 276 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
1511, 12, 13, 14qusbas 12913 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈))
1615eleq2d 2263 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈)))
1715eleq2d 2263 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈)))
1816, 17anbi12d 473 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))))
19 eqid 2193 . . . . . 6 ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = ((Base‘𝑅) / (𝑅 ~QG 𝑆))
20 oveq2 5927 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)𝑦))
21 oveq1 5926 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) = (𝑦(.r𝑈)𝑥))
2220, 21eqeq12d 2208 . . . . . 6 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) ↔ (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
23 oveq1 5926 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)))
24 oveq2 5927 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
2523, 24eqeq12d 2208 . . . . . . . 8 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥)))
26 eqid 2193 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2193 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2826, 27crngcom 13513 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
2928ad4ant134 1219 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3029eceq1d 6625 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
31 ringrng 13535 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
321, 31syl 14 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Rng)
3332adantr 276 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Rng)
343lidlsubg 13985 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
351, 34sylan 283 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
3633, 6, 353jca 1179 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)))
3736adantr 276 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)))
38 simpr 110 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) → 𝑢 ∈ (Base‘𝑅))
3938anim1i 340 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)))
40 eqid 2193 . . . . . . . . . . 11 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
41 eqid 2193 . . . . . . . . . . 11 (.r𝑈) = (.r𝑈)
4240, 7, 26, 27, 41qusmulrng 14031 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4337, 39, 42syl2an2r 595 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4439ancomd 267 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)))
4540, 7, 26, 27, 41qusmulrng 14031 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅))) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4637, 44, 45syl2an2r 595 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4730, 43, 463eqtr4rd 2237 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)))
4819, 25, 47ectocld 6657 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
4948an32s 568 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5019, 22, 49ectocld 6657 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
5150expl 378 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5218, 51sylbird 170 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5352ralrimivv 2575 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
54 eqid 2193 . . 3 (Base‘𝑈) = (Base‘𝑈)
5554, 41iscrng2 13514 . 2 (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5610, 53, 55sylanbrc 417 1 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cfv 5255  (class class class)co 5919  [cec 6587   / cqs 6588  Basecbs 12621  .rcmulr 12699   /s cqus 12886  SubGrpcsubg 13240   ~QG cqg 13242  Rngcrng 13431  Ringcrg 13495  CRingccrg 13496  LIdealclidl 13966  2Idealc2idl 13998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-er 6589  df-ec 6591  df-qs 6595  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-nsg 13244  df-eqg 13245  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-rsp 13969  df-2idl 13999
This theorem is referenced by:  zncrng2  14134
  Copyright terms: Public domain W3C validator