| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2dv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 2581 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | 2 | sumeq2d 11793 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Σcsu 11779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-sumdc 11780 |
| This theorem is referenced by: sumeq2sdv 11796 2sumeq2dv 11797 sumeq12dv 11798 sumeq12rdv 11799 sumfct 11800 fsumf1o 11816 fisumss 11818 fsumsplit 11833 isummulc1 11853 isumdivapc 11854 isumge0 11856 sumsplitdc 11858 fsum2dlemstep 11860 fsumshftm 11871 fisum0diag2 11873 fsummulc1 11875 fsumdivapc 11876 fsumneg 11877 fsumsub 11878 fsum2mul 11879 telfsumo2 11893 fsumparts 11896 hashiun 11904 hash2iun 11905 hash2iun1dif1 11906 binomlem 11909 binom1p 11911 isum1p 11918 arisum 11924 trireciplem 11926 geosergap 11932 geo2sum 11940 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efval2 12091 efaddlem 12100 fsumdvds 12268 phisum 12678 pcfac 12788 elply2 15322 elplyd 15328 plyaddlem1 15334 plymullem1 15335 plycjlemc 15347 plyrecj 15350 dvply1 15352 sgmval2 15571 fsumdvdsmul 15578 sgmppw 15579 1sgmprm 15581 perfectlem2 15587 lgsquadlem1 15669 lgsquadlem2 15670 cvgcmp2nlemabs 16173 redcwlpolemeq1 16195 nconstwlpolem0 16204 |
| Copyright terms: Public domain | W3C validator |