| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2dv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | 2 | sumeq2d 11873 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Σcsu 11859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 df-sumdc 11860 |
| This theorem is referenced by: sumeq2sdv 11876 2sumeq2dv 11877 sumeq12dv 11878 sumeq12rdv 11879 sumfct 11880 fsumf1o 11896 fisumss 11898 fsumsplit 11913 isummulc1 11933 isumdivapc 11934 isumge0 11936 sumsplitdc 11938 fsum2dlemstep 11940 fsumshftm 11951 fisum0diag2 11953 fsummulc1 11955 fsumdivapc 11956 fsumneg 11957 fsumsub 11958 fsum2mul 11959 telfsumo2 11973 fsumparts 11976 hashiun 11984 hash2iun 11985 hash2iun1dif1 11986 binomlem 11989 binom1p 11991 isum1p 11998 arisum 12004 trireciplem 12006 geosergap 12012 geo2sum 12020 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 efval2 12171 efaddlem 12180 fsumdvds 12348 phisum 12758 pcfac 12868 elply2 15403 elplyd 15409 plyaddlem1 15415 plymullem1 15416 plycjlemc 15428 plyrecj 15431 dvply1 15433 sgmval2 15652 fsumdvdsmul 15659 sgmppw 15660 1sgmprm 15662 perfectlem2 15668 lgsquadlem1 15750 lgsquadlem2 15751 cvgcmp2nlemabs 16359 redcwlpolemeq1 16381 nconstwlpolem0 16390 |
| Copyright terms: Public domain | W3C validator |