| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2dv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | 2 | sumeq2d 11551 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Σcsu 11537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-fz 10103 df-seqfrec 10559 df-sumdc 11538 |
| This theorem is referenced by: sumeq2sdv 11554 2sumeq2dv 11555 sumeq12dv 11556 sumeq12rdv 11557 sumfct 11558 fsumf1o 11574 fisumss 11576 fsumsplit 11591 isummulc1 11611 isumdivapc 11612 isumge0 11614 sumsplitdc 11616 fsum2dlemstep 11618 fsumshftm 11629 fisum0diag2 11631 fsummulc1 11633 fsumdivapc 11634 fsumneg 11635 fsumsub 11636 fsum2mul 11637 telfsumo2 11651 fsumparts 11654 hashiun 11662 hash2iun 11663 hash2iun1dif1 11664 binomlem 11667 binom1p 11669 isum1p 11676 arisum 11682 trireciplem 11684 geosergap 11690 geo2sum 11698 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 efval2 11849 efaddlem 11858 fsumdvds 12026 phisum 12436 pcfac 12546 elply2 15079 elplyd 15085 plyaddlem1 15091 plymullem1 15092 plycjlemc 15104 plyrecj 15107 dvply1 15109 sgmval2 15328 fsumdvdsmul 15335 sgmppw 15336 1sgmprm 15338 perfectlem2 15344 lgsquadlem1 15426 lgsquadlem2 15427 cvgcmp2nlemabs 15789 redcwlpolemeq1 15811 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |