| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sumeq2dv | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 2579 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | 2 | sumeq2d 11678 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Σcsu 11664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-seqfrec 10593 df-sumdc 11665 |
| This theorem is referenced by: sumeq2sdv 11681 2sumeq2dv 11682 sumeq12dv 11683 sumeq12rdv 11684 sumfct 11685 fsumf1o 11701 fisumss 11703 fsumsplit 11718 isummulc1 11738 isumdivapc 11739 isumge0 11741 sumsplitdc 11743 fsum2dlemstep 11745 fsumshftm 11756 fisum0diag2 11758 fsummulc1 11760 fsumdivapc 11761 fsumneg 11762 fsumsub 11763 fsum2mul 11764 telfsumo2 11778 fsumparts 11781 hashiun 11789 hash2iun 11790 hash2iun1dif1 11791 binomlem 11794 binom1p 11796 isum1p 11803 arisum 11809 trireciplem 11811 geosergap 11817 geo2sum 11825 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 efval2 11976 efaddlem 11985 fsumdvds 12153 phisum 12563 pcfac 12673 elply2 15207 elplyd 15213 plyaddlem1 15219 plymullem1 15220 plycjlemc 15232 plyrecj 15235 dvply1 15237 sgmval2 15456 fsumdvdsmul 15463 sgmppw 15464 1sgmprm 15466 perfectlem2 15472 lgsquadlem1 15554 lgsquadlem2 15555 cvgcmp2nlemabs 15971 redcwlpolemeq1 15993 nconstwlpolem0 16002 |
| Copyright terms: Public domain | W3C validator |