ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv GIF version

Theorem sumeq2dv 11679
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
sumeq2dv (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 2579 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32sumeq2d 11678 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  Σcsu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-sumdc 11665
This theorem is referenced by:  sumeq2sdv  11681  2sumeq2dv  11682  sumeq12dv  11683  sumeq12rdv  11684  sumfct  11685  fsumf1o  11701  fisumss  11703  fsumsplit  11718  isummulc1  11738  isumdivapc  11739  isumge0  11741  sumsplitdc  11743  fsum2dlemstep  11745  fsumshftm  11756  fisum0diag2  11758  fsummulc1  11760  fsumdivapc  11761  fsumneg  11762  fsumsub  11763  fsum2mul  11764  telfsumo2  11778  fsumparts  11781  hashiun  11789  hash2iun  11790  hash2iun1dif1  11791  binomlem  11794  binom1p  11796  isum1p  11803  arisum  11809  trireciplem  11811  geosergap  11817  geo2sum  11825  mertenslemi1  11846  mertenslem2  11847  mertensabs  11848  efval2  11976  efaddlem  11985  fsumdvds  12153  phisum  12563  pcfac  12673  elply2  15207  elplyd  15213  plyaddlem1  15219  plymullem1  15220  plycjlemc  15232  plyrecj  15235  dvply1  15237  sgmval2  15456  fsumdvdsmul  15463  sgmppw  15464  1sgmprm  15466  perfectlem2  15472  lgsquadlem1  15554  lgsquadlem2  15555  cvgcmp2nlemabs  15971  redcwlpolemeq1  15993  nconstwlpolem0  16002
  Copyright terms: Public domain W3C validator