ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv GIF version

Theorem sumeq2dv 11794
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
sumeq2dv (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 2581 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32sumeq2d 11793 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  Σcsu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-sumdc 11780
This theorem is referenced by:  sumeq2sdv  11796  2sumeq2dv  11797  sumeq12dv  11798  sumeq12rdv  11799  sumfct  11800  fsumf1o  11816  fisumss  11818  fsumsplit  11833  isummulc1  11853  isumdivapc  11854  isumge0  11856  sumsplitdc  11858  fsum2dlemstep  11860  fsumshftm  11871  fisum0diag2  11873  fsummulc1  11875  fsumdivapc  11876  fsumneg  11877  fsumsub  11878  fsum2mul  11879  telfsumo2  11893  fsumparts  11896  hashiun  11904  hash2iun  11905  hash2iun1dif1  11906  binomlem  11909  binom1p  11911  isum1p  11918  arisum  11924  trireciplem  11926  geosergap  11932  geo2sum  11940  mertenslemi1  11961  mertenslem2  11962  mertensabs  11963  efval2  12091  efaddlem  12100  fsumdvds  12268  phisum  12678  pcfac  12788  elply2  15322  elplyd  15328  plyaddlem1  15334  plymullem1  15335  plycjlemc  15347  plyrecj  15350  dvply1  15352  sgmval2  15571  fsumdvdsmul  15578  sgmppw  15579  1sgmprm  15581  perfectlem2  15587  lgsquadlem1  15669  lgsquadlem2  15670  cvgcmp2nlemabs  16173  redcwlpolemeq1  16195  nconstwlpolem0  16204
  Copyright terms: Public domain W3C validator