ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrd0g Unicode version

Theorem swrd0g 11146
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0g  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )

Proof of Theorem swrd0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4182 . 2  |-  (/)  e.  _V
2 swrdval 11134 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  if ( ( F..^ L )  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) ) ,  (/) ) )
3 fzonlt0 10321 . . . . . . . . . . . 12  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( F..^ L
)  =  (/) ) )
43biimprd 158 . . . . . . . . . . 11  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( F..^ L
)  =  (/)  ->  -.  F  <  L ) )
54con2d 625 . . . . . . . . . 10  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  ->  -.  ( F..^ L
)  =  (/) ) )
65impcom 125 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  =  (/) )
7 ss0 3505 . . . . . . . . 9  |-  ( ( F..^ L )  C_  (/) 
->  ( F..^ L )  =  (/) )
86, 7nsyl 629 . . . . . . . 8  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  (/) )
9 dm0 4906 . . . . . . . . . 10  |-  dom  (/)  =  (/)
109a1i 9 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1110sseq2d 3227 . . . . . . . 8  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( ( F..^ L )  C_  dom  (/)  <->  ( F..^ L )  C_  (/) ) )
128, 11mtbird 675 . . . . . . 7  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  dom  (/) )
1312iffalsed 3585 . . . . . 6  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
1413ancoms 268 . . . . 5  |-  ( ( ( F  e.  ZZ  /\  L  e.  ZZ )  /\  F  <  L
)  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
15 ssidd 3218 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  (/)  C_  (/) )
163biimpac 298 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  =  (/) )
179a1i 9 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1815, 16, 173sstr4d 3242 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  C_  dom  (/) )
1918iftrued 3582 . . . . . . 7  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) )
20 zre 9406 . . . . . . . . . . . . . 14  |-  ( L  e.  ZZ  ->  L  e.  RR )
21 zre 9406 . . . . . . . . . . . . . 14  |-  ( F  e.  ZZ  ->  F  e.  RR )
22 lenlt 8178 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( L  <_  F  <->  -.  F  <  L ) )
2322bicomd 141 . . . . . . . . . . . . . 14  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
2420, 21, 23syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
25 fzo0n 10320 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  F  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2624, 25bitrd 188 . . . . . . . . . . . 12  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2726biimpac 298 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( 0..^ ( L  -  F
) )  =  (/) )
2827mpteq1d 4140 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) ) )
2928dmeqd 4894 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  dom  ( x  e.  (/)  |->  ( (/) `  ( x  +  F
) ) ) )
30 ral0 3566 . . . . . . . . . 10  |-  A. x  e.  (/)  ( (/) `  (
x  +  F ) )  e.  _V
31 dmmptg 5194 . . . . . . . . . 10  |-  ( A. x  e.  (/)  ( (/) `  ( x  +  F
) )  e.  _V  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3230, 31mp1i 10 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3329, 32eqtrd 2239 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
34 mptrel 4819 . . . . . . . . 9  |-  Rel  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )
35 reldm0 4910 . . . . . . . . 9  |-  ( Rel  ( x  e.  ( 0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  ->  ( ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/)  <->  dom  ( x  e.  (
0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  =  (/) ) )
3634, 35mp1i 10 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )  =  (/) 
<->  dom  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) ) )
3733, 36mpbird 167 . . . . . . 7  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) )
3819, 37eqtrd 2239 . . . . . 6  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
3938ancoms 268 . . . . 5  |-  ( ( ( F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  F  < 
L )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
40 zdclt 9480 . . . . . 6  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  -> DECID  F  <  L )
41 exmiddc 838 . . . . . 6  |-  (DECID  F  < 
L  ->  ( F  <  L  \/  -.  F  <  L ) )
4240, 41syl 14 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  \/  -.  F  <  L
) )
4314, 39, 42mpjaodan 800 . . . 4  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L )  C_  dom  (/)
,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) ) ,  (/) )  =  (/) )
44433adant1 1018 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
452, 44eqtrd 2239 . 2  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
461, 45mp3an1 1337 1  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3170   (/)c0 3464   ifcif 3575   <.cop 3641   class class class wbr 4054    |-> cmpt 4116   dom cdm 4688   Rel wrel 4693   ` cfv 5285  (class class class)co 5962   RRcr 7954   0cc0 7955    + caddc 7958    < clt 8137    <_ cle 8138    - cmin 8273   ZZcz 9402  ..^cfzo 10294   substr csubstr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-substr 11132
This theorem is referenced by:  pfx0g  11162
  Copyright terms: Public domain W3C validator