ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrd0g Unicode version

Theorem swrd0g 11113
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0g  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )

Proof of Theorem swrd0g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4171 . 2  |-  (/)  e.  _V
2 swrdval 11101 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  if ( ( F..^ L )  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) ) ,  (/) ) )
3 fzonlt0 10291 . . . . . . . . . . . 12  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( F..^ L
)  =  (/) ) )
43biimprd 158 . . . . . . . . . . 11  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( F..^ L
)  =  (/)  ->  -.  F  <  L ) )
54con2d 625 . . . . . . . . . 10  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  ->  -.  ( F..^ L
)  =  (/) ) )
65impcom 125 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  =  (/) )
7 ss0 3501 . . . . . . . . 9  |-  ( ( F..^ L )  C_  (/) 
->  ( F..^ L )  =  (/) )
86, 7nsyl 629 . . . . . . . 8  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  (/) )
9 dm0 4892 . . . . . . . . . 10  |-  dom  (/)  =  (/)
109a1i 9 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1110sseq2d 3223 . . . . . . . 8  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( ( F..^ L )  C_  dom  (/)  <->  ( F..^ L )  C_  (/) ) )
128, 11mtbird 675 . . . . . . 7  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  dom  (/) )
1312iffalsed 3581 . . . . . 6  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
1413ancoms 268 . . . . 5  |-  ( ( ( F  e.  ZZ  /\  L  e.  ZZ )  /\  F  <  L
)  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
15 ssidd 3214 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  (/)  C_  (/) )
163biimpac 298 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  =  (/) )
179a1i 9 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1815, 16, 173sstr4d 3238 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  C_  dom  (/) )
1918iftrued 3578 . . . . . . 7  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) )
20 zre 9376 . . . . . . . . . . . . . 14  |-  ( L  e.  ZZ  ->  L  e.  RR )
21 zre 9376 . . . . . . . . . . . . . 14  |-  ( F  e.  ZZ  ->  F  e.  RR )
22 lenlt 8148 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( L  <_  F  <->  -.  F  <  L ) )
2322bicomd 141 . . . . . . . . . . . . . 14  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
2420, 21, 23syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
25 fzo0n 10290 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  F  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2624, 25bitrd 188 . . . . . . . . . . . 12  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2726biimpac 298 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( 0..^ ( L  -  F
) )  =  (/) )
2827mpteq1d 4129 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) ) )
2928dmeqd 4880 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  dom  ( x  e.  (/)  |->  ( (/) `  ( x  +  F
) ) ) )
30 ral0 3562 . . . . . . . . . 10  |-  A. x  e.  (/)  ( (/) `  (
x  +  F ) )  e.  _V
31 dmmptg 5180 . . . . . . . . . 10  |-  ( A. x  e.  (/)  ( (/) `  ( x  +  F
) )  e.  _V  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3230, 31mp1i 10 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3329, 32eqtrd 2238 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
34 mptrel 4806 . . . . . . . . 9  |-  Rel  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )
35 reldm0 4896 . . . . . . . . 9  |-  ( Rel  ( x  e.  ( 0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  ->  ( ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/)  <->  dom  ( x  e.  (
0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  =  (/) ) )
3634, 35mp1i 10 . . . . . . . 8  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )  =  (/) 
<->  dom  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) ) )
3733, 36mpbird 167 . . . . . . 7  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) )
3819, 37eqtrd 2238 . . . . . 6  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
3938ancoms 268 . . . . 5  |-  ( ( ( F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  F  < 
L )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
40 zdclt 9450 . . . . . 6  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  -> DECID  F  <  L )
41 exmiddc 838 . . . . . 6  |-  (DECID  F  < 
L  ->  ( F  <  L  \/  -.  F  <  L ) )
4240, 41syl 14 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  \/  -.  F  <  L
) )
4314, 39, 42mpjaodan 800 . . . 4  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L )  C_  dom  (/)
,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) ) ,  (/) )  =  (/) )
44433adant1 1018 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
452, 44eqtrd 2238 . 2  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
461, 45mp3an1 1337 1  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   (/)c0 3460   ifcif 3571   <.cop 3636   class class class wbr 4044    |-> cmpt 4105   dom cdm 4675   Rel wrel 4680   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    < clt 8107    <_ cle 8108    - cmin 8243   ZZcz 9372  ..^cfzo 10264   substr csubstr 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-substr 11099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator