| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodcl | GIF version | ||
| Description: Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
| Ref | Expression |
|---|---|
| zmodcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9760 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℚ) |
| 3 | nnq 9767 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℚ) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℚ) |
| 5 | nngt0 9074 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 7 | modqval 10482 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 9 | nnz 9404 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 10 | 9 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 11 | znq 9758 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) | |
| 12 | 11 | flqcld 10433 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
| 13 | 10, 12 | zmulcld 9514 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℤ) |
| 14 | zsubcl 9426 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℤ) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℤ) | |
| 15 | 13, 14 | syldan 282 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℤ) |
| 16 | 8, 15 | eqeltrd 2283 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℤ) |
| 17 | modqge0 10490 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) | |
| 18 | 2, 4, 6, 17 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 mod 𝐵)) |
| 19 | elnn0z 9398 | . 2 ⊢ ((𝐴 mod 𝐵) ∈ ℕ0 ↔ ((𝐴 mod 𝐵) ∈ ℤ ∧ 0 ≤ (𝐴 mod 𝐵))) | |
| 20 | 16, 18, 19 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 0cc0 7938 · cmul 7943 < clt 8120 ≤ cle 8121 − cmin 8256 / cdiv 8758 ℕcn 9049 ℕ0cn0 9308 ℤcz 9385 ℚcq 9753 ⌊cfl 10424 mod cmo 10480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-n0 9309 df-z 9386 df-q 9754 df-rp 9789 df-fl 10426 df-mod 10481 |
| This theorem is referenced by: zmodcld 10503 zmodfz 10504 modaddmodup 10545 modaddmodlo 10546 modfsummodlemstep 11818 divalglemnn 12279 divalgmod 12288 modgcd 12362 eucalgf 12427 eucalginv 12428 modprmn0modprm0 12629 fldivp1 12721 lgsmod 15553 lgsdir2lem4 15558 lgsdir2lem5 15559 lgsne0 15565 |
| Copyright terms: Public domain | W3C validator |