Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemf GIF version

Theorem axcaucvglemf 7799
 Description: Lemma for axcaucvg 7803. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemf (𝜑𝐺:NR)
Distinct variable groups:   𝜑,𝑗   𝑧,𝐹   𝑗,𝑙,𝑢,𝑧   𝑦,𝑙,𝑢   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑥,𝑦,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝐺(𝑥,𝑦,𝑧,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)   𝑁(𝑥,𝑦,𝑧,𝑢,𝑗,𝑘,𝑛,𝑟,𝑙)

Proof of Theorem axcaucvglemf
StepHypRef Expression
1 axcaucvg.n . . 3 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 axcaucvg.f . . 3 (𝜑𝐹:𝑁⟶ℝ)
31, 2axcaucvglemcl 7798 . 2 ((𝜑𝑗N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
4 axcaucvg.g . 2 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
53, 4fmptd 5618 1 (𝜑𝐺:NR)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1335   ∈ wcel 2128  {cab 2143  ∀wral 2435  ⟨cop 3563  ∩ cint 3807   class class class wbr 3965   ↦ cmpt 4025  ⟶wf 5163  ‘cfv 5167  ℩crio 5773  (class class class)co 5818  1oc1o 6350  [cec 6471  Ncnpi 7175   ~Q ceq 7182
 Copyright terms: Public domain W3C validator