| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcaucvglemf | GIF version | ||
| Description: Lemma for axcaucvg 8028. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| axcaucvg.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| axcaucvg.f | ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) |
| axcaucvg.cau | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
| axcaucvg.g | ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
| Ref | Expression |
|---|---|
| axcaucvglemf | ⊢ (𝜑 → 𝐺:N⟶R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcaucvg.n | . . 3 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | axcaucvg.f | . . 3 ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) | |
| 3 | 1, 2 | axcaucvglemcl 8023 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ N) → (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) ∈ R) |
| 4 | axcaucvg.g | . 2 ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) | |
| 5 | 3, 4 | fmptd 5746 | 1 ⊢ (𝜑 → 𝐺:N⟶R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 〈cop 3640 ∩ cint 3890 class class class wbr 4050 ↦ cmpt 4112 ⟶wf 5275 ‘cfv 5279 ℩crio 5910 (class class class)co 5956 1oc1o 6507 [cec 6630 Ncnpi 7400 ~Q ceq 7407 <Q cltq 7413 1Pc1p 7420 +P cpp 7421 ~R cer 7424 Rcnr 7425 0Rc0r 7426 ℝcr 7939 1c1 7941 + caddc 7943 <ℝ cltrr 7944 · cmul 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-2o 6515 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 df-enq0 7552 df-nq0 7553 df-0nq0 7554 df-plq0 7555 df-mq0 7556 df-inp 7594 df-i1p 7595 df-iplp 7596 df-enr 7854 df-nr 7855 df-plr 7856 df-0r 7859 df-1r 7860 df-c 7946 df-1 7948 df-r 7950 df-add 7951 |
| This theorem is referenced by: axcaucvglemcau 8026 axcaucvglemres 8027 |
| Copyright terms: Public domain | W3C validator |