Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ 𝐹 ∈
(Poly‘ℝ)) |
2 | | elply 14905 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) |
3 | 1, 2 | sylib 122 |
. . 3
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) |
4 | 3 | simprd 114 |
. 2
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ ∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
5 | | 0zd 9332 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 0 ∈ ℤ) |
6 | | simprl 529 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑛 ∈
ℕ0) |
7 | 6 | nn0zd 9440 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑛 ∈
ℤ) |
8 | 5, 7 | fzfigd 10505 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (0...𝑛) ∈
Fin) |
9 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)) |
10 | | 0re 8021 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
11 | | snssi 3763 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ {0}
⊆ ℝ |
13 | | ssequn2 3333 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ) |
14 | 12, 13 | mpbi 145 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
∪ {0}) = ℝ |
15 | | reex 8008 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
16 | 14, 15 | eqeltri 2266 |
. . . . . . . . . . . . . 14
⊢ (ℝ
∪ {0}) ∈ V |
17 | | nn0ex 9249 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
18 | 16, 17 | elmap 6733 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶(ℝ ∪
{0})) |
19 | | feq3 5389 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪
{0}) ↔ 𝑎:ℕ0⟶ℝ)) |
20 | 14, 19 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑎:ℕ0⟶(ℝ ∪
{0}) ↔ 𝑎:ℕ0⟶ℝ) |
21 | 18, 20 | bitri 184 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶ℝ) |
22 | 9, 21 | sylib 122 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ) |
23 | | elfznn0 10183 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
24 | 23 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
25 | 22, 24 | ffvelcdmd 5695 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℝ) |
26 | 25 | recnd 8050 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
27 | | simpllr 534 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ) |
28 | 27, 24 | expcld 10747 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝐴↑𝑘) ∈ ℂ) |
29 | 26, 28 | mulcld 8042 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝐴↑𝑘)) ∈ ℂ) |
30 | 8, 29 | fsumcj 11620 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎‘𝑘) · (𝐴↑𝑘)))) |
31 | 26, 28 | cjmuld 11113 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = ((∗‘(𝑎‘𝑘)) · (∗‘(𝐴↑𝑘)))) |
32 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑎 ∈ ((ℝ
∪ {0}) ↑𝑚 ℕ0)) |
33 | 32, 21 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑎:ℕ0⟶ℝ) |
34 | 33 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ) |
35 | 34, 24 | ffvelcdmd 5695 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℝ) |
36 | 35 | cjred 11118 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎‘𝑘)) = (𝑎‘𝑘)) |
37 | 27, 24 | cjexpd 11105 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) |
38 | 36, 37 | oveq12d 5937 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
((∗‘(𝑎‘𝑘)) · (∗‘(𝐴↑𝑘))) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
39 | 31, 38 | eqtrd 2226 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
40 | 39 | sumeq2dv 11514 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
41 | 30, 40 | eqtrd 2226 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
42 | 41 | adantr 276 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
43 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
44 | 43 | fveq1d 5557 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴)) |
45 | | eqid 2193 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) |
46 | | oveq1 5926 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝑥↑𝑘) = (𝐴↑𝑘)) |
47 | 46 | oveq2d 5935 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝐴↑𝑘))) |
48 | 47 | sumeq2sdv 11516 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) |
49 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝐴 ∈
ℂ) |
50 | 8, 29 | fsumcl 11546 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘)) ∈ ℂ) |
51 | 45, 48, 49, 50 | fvmptd3 5652 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ ((𝑥 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) |
52 | 51 | adantr 276 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) |
53 | 44, 52 | eqtrd 2226 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) |
54 | 53 | fveq2d 5559 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘(𝐹‘𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘)))) |
55 | 43 | fveq1d 5557 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴))) |
56 | | oveq1 5926 |
. . . . . . . . . 10
⊢ (𝑥 = (∗‘𝐴) → (𝑥↑𝑘) = ((∗‘𝐴)↑𝑘)) |
57 | 56 | oveq2d 5935 |
. . . . . . . . 9
⊢ (𝑥 = (∗‘𝐴) → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
58 | 57 | sumeq2sdv 11516 |
. . . . . . . 8
⊢ (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
59 | 49 | cjcld 11087 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘𝐴)
∈ ℂ) |
60 | 59 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈
ℂ) |
61 | 60, 24 | expcld 10747 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ) |
62 | 26, 61 | mulcld 8042 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ) |
63 | 8, 62 | fsumcl 11546 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ) |
64 | 45, 58, 59, 63 | fvmptd3 5652 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ ((𝑥 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
65 | 64 | adantr 276 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
66 | 55, 65 | eqtrd 2226 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) |
67 | 42, 54, 66 | 3eqtr4d 2236 |
. . . 4
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
68 | 67 | ex 115 |
. . 3
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴)))) |
69 | 68 | rexlimdvva 2619 |
. 2
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴)))) |
70 | 4, 69 | mpd 13 |
1
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |