ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj GIF version

Theorem plyrecj 15445
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variables 𝑎 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℝ))
2 elply 15416 . . . 4 (𝐹 ∈ (Poly‘ℝ) ↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
31, 2sylib 122 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
43simprd 114 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5 0zd 9466 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
6 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℕ0)
76nn0zd 9575 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℤ)
85, 7fzfigd 10661 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 simplrr 536 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
10 0re 8154 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
11 snssi 3812 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → {0} ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 {0} ⊆ ℝ
13 ssequn2 3377 . . . . . . . . . . . . . . . 16 ({0} ⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ)
1412, 13mpbi 145 . . . . . . . . . . . . . . 15 (ℝ ∪ {0}) = ℝ
15 reex 8141 . . . . . . . . . . . . . . 15 ℝ ∈ V
1614, 15eqeltri 2302 . . . . . . . . . . . . . 14 (ℝ ∪ {0}) ∈ V
17 nn0ex 9383 . . . . . . . . . . . . . 14 0 ∈ V
1816, 17elmap 6832 . . . . . . . . . . . . 13 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(ℝ ∪ {0}))
19 feq3 5458 . . . . . . . . . . . . . 14 ((ℝ ∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ))
2014, 19ax-mp 5 . . . . . . . . . . . . 13 (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ)
2118, 20bitri 184 . . . . . . . . . . . 12 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶ℝ)
229, 21sylib 122 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
23 elfznn0 10318 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5773 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
2625recnd 8183 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
27 simpllr 534 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
2827, 24expcld 10903 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
2926, 28mulcld 8175 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
308, 29fsumcj 11993 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))))
3126, 28cjmuld 11485 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))))
32 simprr 531 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
3332, 21sylib 122 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℝ)
3433adantr 276 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
3534, 24ffvelcdmd 5773 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
3635cjred 11490 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) = (𝑎𝑘))
3727, 24cjexpd 11477 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3836, 37oveq12d 6025 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
3931, 38eqtrd 2262 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4039sumeq2dv 11887 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4130, 40eqtrd 2262 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4241adantr 276 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
43 simpr 110 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
4443fveq1d 5631 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴))
45 eqid 2229 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))
46 oveq1 6014 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
4746oveq2d 6023 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝐴𝑘)))
4847sumeq2sdv 11889 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
49 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝐴 ∈ ℂ)
508, 29fsumcl 11919 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
5145, 48, 49, 50fvmptd3 5730 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5251adantr 276 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5344, 52eqtrd 2262 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5453fveq2d 5633 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))))
5543fveq1d 5631 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)))
56 oveq1 6014 . . . . . . . . . 10 (𝑥 = (∗‘𝐴) → (𝑥𝑘) = ((∗‘𝐴)↑𝑘))
5756oveq2d 6023 . . . . . . . . 9 (𝑥 = (∗‘𝐴) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5857sumeq2sdv 11889 . . . . . . . 8 (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5949cjcld 11459 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘𝐴) ∈ ℂ)
6059adantr 276 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈ ℂ)
6160, 24expcld 10903 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ)
6226, 61mulcld 8175 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
638, 62fsumcl 11919 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
6445, 58, 59, 63fvmptd3 5730 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6564adantr 276 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6655, 65eqtrd 2262 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6742, 54, 663eqtr4d 2272 . . . 4 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
6867ex 115 . . 3 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
6968rexlimdvva 2656 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
704, 69mpd 13 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  cun 3195  wss 3197  {csn 3666  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  cc 8005  cr 8006  0cc0 8007   · cmul 8012  0cn0 9377  ...cfz 10212  cexp 10768  ccj 11358  Σcsu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ply 15412
This theorem is referenced by:  plyreres  15446
  Copyright terms: Public domain W3C validator