ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj GIF version

Theorem plyrecj 14933
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variables 𝑎 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℝ))
2 elply 14905 . . . 4 (𝐹 ∈ (Poly‘ℝ) ↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
31, 2sylib 122 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
43simprd 114 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5 0zd 9332 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
6 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℕ0)
76nn0zd 9440 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℤ)
85, 7fzfigd 10505 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 simplrr 536 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
10 0re 8021 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
11 snssi 3763 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → {0} ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 {0} ⊆ ℝ
13 ssequn2 3333 . . . . . . . . . . . . . . . 16 ({0} ⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ)
1412, 13mpbi 145 . . . . . . . . . . . . . . 15 (ℝ ∪ {0}) = ℝ
15 reex 8008 . . . . . . . . . . . . . . 15 ℝ ∈ V
1614, 15eqeltri 2266 . . . . . . . . . . . . . 14 (ℝ ∪ {0}) ∈ V
17 nn0ex 9249 . . . . . . . . . . . . . 14 0 ∈ V
1816, 17elmap 6733 . . . . . . . . . . . . 13 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(ℝ ∪ {0}))
19 feq3 5389 . . . . . . . . . . . . . 14 ((ℝ ∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ))
2014, 19ax-mp 5 . . . . . . . . . . . . 13 (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ)
2118, 20bitri 184 . . . . . . . . . . . 12 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶ℝ)
229, 21sylib 122 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
23 elfznn0 10183 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5695 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
2625recnd 8050 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
27 simpllr 534 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
2827, 24expcld 10747 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
2926, 28mulcld 8042 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
308, 29fsumcj 11620 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))))
3126, 28cjmuld 11113 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))))
32 simprr 531 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
3332, 21sylib 122 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℝ)
3433adantr 276 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
3534, 24ffvelcdmd 5695 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
3635cjred 11118 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) = (𝑎𝑘))
3727, 24cjexpd 11105 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3836, 37oveq12d 5937 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
3931, 38eqtrd 2226 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4039sumeq2dv 11514 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4130, 40eqtrd 2226 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4241adantr 276 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
43 simpr 110 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
4443fveq1d 5557 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴))
45 eqid 2193 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))
46 oveq1 5926 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
4746oveq2d 5935 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝐴𝑘)))
4847sumeq2sdv 11516 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
49 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝐴 ∈ ℂ)
508, 29fsumcl 11546 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
5145, 48, 49, 50fvmptd3 5652 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5251adantr 276 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5344, 52eqtrd 2226 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5453fveq2d 5559 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))))
5543fveq1d 5557 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)))
56 oveq1 5926 . . . . . . . . . 10 (𝑥 = (∗‘𝐴) → (𝑥𝑘) = ((∗‘𝐴)↑𝑘))
5756oveq2d 5935 . . . . . . . . 9 (𝑥 = (∗‘𝐴) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5857sumeq2sdv 11516 . . . . . . . 8 (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5949cjcld 11087 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘𝐴) ∈ ℂ)
6059adantr 276 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈ ℂ)
6160, 24expcld 10747 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ)
6226, 61mulcld 8042 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
638, 62fsumcl 11546 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
6445, 58, 59, 63fvmptd3 5652 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6564adantr 276 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6655, 65eqtrd 2226 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6742, 54, 663eqtr4d 2236 . . . 4 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
6867ex 115 . . 3 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
6968rexlimdvva 2619 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
704, 69mpd 13 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  cun 3152  wss 3154  {csn 3619  cmpt 4091  wf 5251  cfv 5255  (class class class)co 5919  𝑚 cmap 6704  cc 7872  cr 7873  0cc0 7874   · cmul 7879  0cn0 9243  ...cfz 10077  cexp 10612  ccj 10986  Σcsu 11499  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14901
This theorem is referenced by:  plyreres  14934
  Copyright terms: Public domain W3C validator