| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ 𝐹 ∈
(Poly‘ℝ)) | 
| 2 |   | elply 14970 | 
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) | 
| 3 | 1, 2 | sylib 122 | 
. . 3
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) | 
| 4 | 3 | simprd 114 | 
. 2
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ ∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) | 
| 5 |   | 0zd 9338 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 0 ∈ ℤ) | 
| 6 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑛 ∈
ℕ0) | 
| 7 | 6 | nn0zd 9446 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑛 ∈
ℤ) | 
| 8 | 5, 7 | fzfigd 10523 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (0...𝑛) ∈
Fin) | 
| 9 |   | simplrr 536 | 
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)) | 
| 10 |   | 0re 8026 | 
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ | 
| 11 |   | snssi 3766 | 
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) | 
| 12 | 10, 11 | ax-mp 5 | 
. . . . . . . . . . . . . . . 16
⊢ {0}
⊆ ℝ | 
| 13 |   | ssequn2 3336 | 
. . . . . . . . . . . . . . . 16
⊢ ({0}
⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ) | 
| 14 | 12, 13 | mpbi 145 | 
. . . . . . . . . . . . . . 15
⊢ (ℝ
∪ {0}) = ℝ | 
| 15 |   | reex 8013 | 
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V | 
| 16 | 14, 15 | eqeltri 2269 | 
. . . . . . . . . . . . . 14
⊢ (ℝ
∪ {0}) ∈ V | 
| 17 |   | nn0ex 9255 | 
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V | 
| 18 | 16, 17 | elmap 6736 | 
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶(ℝ ∪
{0})) | 
| 19 |   | feq3 5392 | 
. . . . . . . . . . . . . 14
⊢ ((ℝ
∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪
{0}) ↔ 𝑎:ℕ0⟶ℝ)) | 
| 20 | 14, 19 | ax-mp 5 | 
. . . . . . . . . . . . 13
⊢ (𝑎:ℕ0⟶(ℝ ∪
{0}) ↔ 𝑎:ℕ0⟶ℝ) | 
| 21 | 18, 20 | bitri 184 | 
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶ℝ) | 
| 22 | 9, 21 | sylib 122 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ) | 
| 23 |   | elfznn0 10189 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | 
| 24 | 23 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) | 
| 25 | 22, 24 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℝ) | 
| 26 | 25 | recnd 8055 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) | 
| 27 |   | simpllr 534 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ) | 
| 28 | 27, 24 | expcld 10765 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝐴↑𝑘) ∈ ℂ) | 
| 29 | 26, 28 | mulcld 8047 | 
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝐴↑𝑘)) ∈ ℂ) | 
| 30 | 8, 29 | fsumcj 11639 | 
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎‘𝑘) · (𝐴↑𝑘)))) | 
| 31 | 26, 28 | cjmuld 11131 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = ((∗‘(𝑎‘𝑘)) · (∗‘(𝐴↑𝑘)))) | 
| 32 |   | simprr 531 | 
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑎 ∈ ((ℝ
∪ {0}) ↑𝑚 ℕ0)) | 
| 33 | 32, 21 | sylib 122 | 
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝑎:ℕ0⟶ℝ) | 
| 34 | 33 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ) | 
| 35 | 34, 24 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℝ) | 
| 36 | 35 | cjred 11136 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎‘𝑘)) = (𝑎‘𝑘)) | 
| 37 | 27, 24 | cjexpd 11123 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) | 
| 38 | 36, 37 | oveq12d 5940 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
((∗‘(𝑎‘𝑘)) · (∗‘(𝐴↑𝑘))) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 39 | 31, 38 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) →
(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 40 | 39 | sumeq2dv 11533 | 
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)(∗‘((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 41 | 30, 40 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 42 | 41 | adantr 276 | 
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 43 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) | 
| 44 | 43 | fveq1d 5560 | 
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴)) | 
| 45 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) | 
| 46 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝑥↑𝑘) = (𝐴↑𝑘)) | 
| 47 | 46 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝐴↑𝑘))) | 
| 48 | 47 | sumeq2sdv 11535 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) | 
| 49 |   | simplr 528 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ 𝐴 ∈
ℂ) | 
| 50 | 8, 29 | fsumcl 11565 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘)) ∈ ℂ) | 
| 51 | 45, 48, 49, 50 | fvmptd3 5655 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ ((𝑥 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) | 
| 52 | 51 | adantr 276 | 
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) | 
| 53 | 44, 52 | eqtrd 2229 | 
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘))) | 
| 54 | 53 | fveq2d 5562 | 
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘(𝐹‘𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝐴↑𝑘)))) | 
| 55 | 43 | fveq1d 5560 | 
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴))) | 
| 56 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑥 = (∗‘𝐴) → (𝑥↑𝑘) = ((∗‘𝐴)↑𝑘)) | 
| 57 | 56 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑥 = (∗‘𝐴) → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 58 | 57 | sumeq2sdv 11535 | 
. . . . . . . 8
⊢ (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 59 | 49 | cjcld 11105 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (∗‘𝐴)
∈ ℂ) | 
| 60 | 59 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈
ℂ) | 
| 61 | 60, 24 | expcld 10765 | 
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ) | 
| 62 | 26, 61 | mulcld 8047 | 
. . . . . . . . 9
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ) | 
| 63 | 8, 62 | fsumcl 11565 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ) | 
| 64 | 45, 58, 59, 63 | fvmptd3 5655 | 
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ ((𝑥 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 65 | 64 | adantr 276 | 
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 66 | 55, 65 | eqtrd 2229 | 
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((∗‘𝐴)↑𝑘))) | 
| 67 | 42, 54, 66 | 3eqtr4d 2239 | 
. . . 4
⊢ ((((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
∧ 𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | 
| 68 | 67 | ex 115 | 
. . 3
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
∧ (𝑛 ∈
ℕ0 ∧ 𝑎
∈ ((ℝ ∪ {0}) ↑𝑚 ℕ0)))
→ (𝐹 = (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴)))) | 
| 69 | 68 | rexlimdvva 2622 | 
. 2
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((ℝ ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴)))) | 
| 70 | 4, 69 | mpd 13 | 
1
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝐴 ∈ ℂ)
→ (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |