ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj GIF version

Theorem plyrecj 15402
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variables 𝑎 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℝ))
2 elply 15373 . . . 4 (𝐹 ∈ (Poly‘ℝ) ↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
31, 2sylib 122 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
43simprd 114 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5 0zd 9426 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
6 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℕ0)
76nn0zd 9535 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℤ)
85, 7fzfigd 10620 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 simplrr 536 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
10 0re 8114 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
11 snssi 3791 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → {0} ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 {0} ⊆ ℝ
13 ssequn2 3357 . . . . . . . . . . . . . . . 16 ({0} ⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ)
1412, 13mpbi 145 . . . . . . . . . . . . . . 15 (ℝ ∪ {0}) = ℝ
15 reex 8101 . . . . . . . . . . . . . . 15 ℝ ∈ V
1614, 15eqeltri 2282 . . . . . . . . . . . . . 14 (ℝ ∪ {0}) ∈ V
17 nn0ex 9343 . . . . . . . . . . . . . 14 0 ∈ V
1816, 17elmap 6794 . . . . . . . . . . . . 13 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(ℝ ∪ {0}))
19 feq3 5434 . . . . . . . . . . . . . 14 ((ℝ ∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ))
2014, 19ax-mp 5 . . . . . . . . . . . . 13 (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ)
2118, 20bitri 184 . . . . . . . . . . . 12 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶ℝ)
229, 21sylib 122 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
23 elfznn0 10278 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5744 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
2625recnd 8143 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
27 simpllr 534 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
2827, 24expcld 10862 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
2926, 28mulcld 8135 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
308, 29fsumcj 11951 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))))
3126, 28cjmuld 11443 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))))
32 simprr 531 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
3332, 21sylib 122 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℝ)
3433adantr 276 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
3534, 24ffvelcdmd 5744 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
3635cjred 11448 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) = (𝑎𝑘))
3727, 24cjexpd 11435 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3836, 37oveq12d 5992 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
3931, 38eqtrd 2242 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4039sumeq2dv 11845 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4130, 40eqtrd 2242 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4241adantr 276 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
43 simpr 110 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
4443fveq1d 5605 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴))
45 eqid 2209 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))
46 oveq1 5981 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
4746oveq2d 5990 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝐴𝑘)))
4847sumeq2sdv 11847 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
49 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝐴 ∈ ℂ)
508, 29fsumcl 11877 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
5145, 48, 49, 50fvmptd3 5701 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5251adantr 276 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5344, 52eqtrd 2242 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5453fveq2d 5607 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))))
5543fveq1d 5605 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)))
56 oveq1 5981 . . . . . . . . . 10 (𝑥 = (∗‘𝐴) → (𝑥𝑘) = ((∗‘𝐴)↑𝑘))
5756oveq2d 5990 . . . . . . . . 9 (𝑥 = (∗‘𝐴) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5857sumeq2sdv 11847 . . . . . . . 8 (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5949cjcld 11417 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘𝐴) ∈ ℂ)
6059adantr 276 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈ ℂ)
6160, 24expcld 10862 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ)
6226, 61mulcld 8135 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
638, 62fsumcl 11877 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
6445, 58, 59, 63fvmptd3 5701 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6564adantr 276 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6655, 65eqtrd 2242 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6742, 54, 663eqtr4d 2252 . . . 4 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
6867ex 115 . . 3 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
6968rexlimdvva 2636 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
704, 69mpd 13 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wrex 2489  Vcvv 2779  cun 3175  wss 3177  {csn 3646  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cc 7965  cr 7966  0cc0 7967   · cmul 7972  0cn0 9337  ...cfz 10172  cexp 10727  ccj 11316  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plyreres  15403
  Copyright terms: Public domain W3C validator