ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj GIF version

Theorem plyrecj 15279
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variables 𝑎 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℝ))
2 elply 15250 . . . 4 (𝐹 ∈ (Poly‘ℝ) ↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
31, 2sylib 122 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
43simprd 114 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5 0zd 9391 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
6 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℕ0)
76nn0zd 9500 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℤ)
85, 7fzfigd 10583 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 simplrr 536 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
10 0re 8079 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
11 snssi 3779 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → {0} ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 {0} ⊆ ℝ
13 ssequn2 3347 . . . . . . . . . . . . . . . 16 ({0} ⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ)
1412, 13mpbi 145 . . . . . . . . . . . . . . 15 (ℝ ∪ {0}) = ℝ
15 reex 8066 . . . . . . . . . . . . . . 15 ℝ ∈ V
1614, 15eqeltri 2279 . . . . . . . . . . . . . 14 (ℝ ∪ {0}) ∈ V
17 nn0ex 9308 . . . . . . . . . . . . . 14 0 ∈ V
1816, 17elmap 6771 . . . . . . . . . . . . 13 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(ℝ ∪ {0}))
19 feq3 5416 . . . . . . . . . . . . . 14 ((ℝ ∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ))
2014, 19ax-mp 5 . . . . . . . . . . . . 13 (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ)
2118, 20bitri 184 . . . . . . . . . . . 12 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶ℝ)
229, 21sylib 122 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
23 elfznn0 10243 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5723 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
2625recnd 8108 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
27 simpllr 534 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
2827, 24expcld 10825 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
2926, 28mulcld 8100 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
308, 29fsumcj 11829 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))))
3126, 28cjmuld 11321 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))))
32 simprr 531 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
3332, 21sylib 122 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℝ)
3433adantr 276 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
3534, 24ffvelcdmd 5723 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
3635cjred 11326 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) = (𝑎𝑘))
3727, 24cjexpd 11313 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3836, 37oveq12d 5969 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
3931, 38eqtrd 2239 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4039sumeq2dv 11723 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4130, 40eqtrd 2239 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4241adantr 276 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
43 simpr 110 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
4443fveq1d 5585 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴))
45 eqid 2206 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))
46 oveq1 5958 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
4746oveq2d 5967 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝐴𝑘)))
4847sumeq2sdv 11725 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
49 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝐴 ∈ ℂ)
508, 29fsumcl 11755 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
5145, 48, 49, 50fvmptd3 5680 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5251adantr 276 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5344, 52eqtrd 2239 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5453fveq2d 5587 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))))
5543fveq1d 5585 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)))
56 oveq1 5958 . . . . . . . . . 10 (𝑥 = (∗‘𝐴) → (𝑥𝑘) = ((∗‘𝐴)↑𝑘))
5756oveq2d 5967 . . . . . . . . 9 (𝑥 = (∗‘𝐴) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5857sumeq2sdv 11725 . . . . . . . 8 (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5949cjcld 11295 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘𝐴) ∈ ℂ)
6059adantr 276 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈ ℂ)
6160, 24expcld 10825 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ)
6226, 61mulcld 8100 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
638, 62fsumcl 11755 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
6445, 58, 59, 63fvmptd3 5680 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6564adantr 276 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6655, 65eqtrd 2239 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6742, 54, 663eqtr4d 2249 . . . 4 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
6867ex 115 . . 3 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
6968rexlimdvva 2632 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
704, 69mpd 13 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  cun 3165  wss 3167  {csn 3634  cmpt 4109  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  cc 7930  cr 7931  0cc0 7932   · cmul 7937  0cn0 9302  ...cfz 10137  cexp 10690  ccj 11194  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by:  plyreres  15280
  Copyright terms: Public domain W3C validator