ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj GIF version

Theorem plyrecj 15083
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variables 𝑎 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℝ))
2 elply 15054 . . . 4 (𝐹 ∈ (Poly‘ℝ) ↔ (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
31, 2sylib 122 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (ℝ ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
43simprd 114 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5 0zd 9355 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
6 simprl 529 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℕ0)
76nn0zd 9463 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑛 ∈ ℤ)
85, 7fzfigd 10540 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 simplrr 536 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
10 0re 8043 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
11 snssi 3767 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → {0} ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16 {0} ⊆ ℝ
13 ssequn2 3337 . . . . . . . . . . . . . . . 16 ({0} ⊆ ℝ ↔ (ℝ ∪ {0}) = ℝ)
1412, 13mpbi 145 . . . . . . . . . . . . . . 15 (ℝ ∪ {0}) = ℝ
15 reex 8030 . . . . . . . . . . . . . . 15 ℝ ∈ V
1614, 15eqeltri 2269 . . . . . . . . . . . . . 14 (ℝ ∪ {0}) ∈ V
17 nn0ex 9272 . . . . . . . . . . . . . 14 0 ∈ V
1816, 17elmap 6745 . . . . . . . . . . . . 13 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(ℝ ∪ {0}))
19 feq3 5395 . . . . . . . . . . . . . 14 ((ℝ ∪ {0}) = ℝ → (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ))
2014, 19ax-mp 5 . . . . . . . . . . . . 13 (𝑎:ℕ0⟶(ℝ ∪ {0}) ↔ 𝑎:ℕ0⟶ℝ)
2118, 20bitri 184 . . . . . . . . . . . 12 (𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶ℝ)
229, 21sylib 122 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
23 elfznn0 10206 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5701 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
2625recnd 8072 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
27 simpllr 534 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
2827, 24expcld 10782 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
2926, 28mulcld 8064 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
308, 29fsumcj 11656 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))))
3126, 28cjmuld 11148 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))))
32 simprr 531 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))
3332, 21sylib 122 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℝ)
3433adantr 276 . . . . . . . . . . . 12 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑎:ℕ0⟶ℝ)
3534, 24ffvelcdmd 5701 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℝ)
3635cjred 11153 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝑎𝑘)) = (𝑎𝑘))
3727, 24cjexpd 11140 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3836, 37oveq12d 5943 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘(𝑎𝑘)) · (∗‘(𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
3931, 38eqtrd 2229 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘((𝑎𝑘) · (𝐴𝑘))) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4039sumeq2dv 11550 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)(∗‘((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4130, 40eqtrd 2229 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
4241adantr 276 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
43 simpr 110 . . . . . . . 8 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
4443fveq1d 5563 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴))
45 eqid 2196 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))
46 oveq1 5932 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
4746oveq2d 5941 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝐴𝑘)))
4847sumeq2sdv 11552 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
49 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → 𝐴 ∈ ℂ)
508, 29fsumcl 11582 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)) ∈ ℂ)
5145, 48, 49, 50fvmptd3 5658 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5251adantr 276 . . . . . . 7 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5344, 52eqtrd 2229 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐴) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘)))
5453fveq2d 5565 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝐴𝑘))))
5543fveq1d 5563 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)))
56 oveq1 5932 . . . . . . . . . 10 (𝑥 = (∗‘𝐴) → (𝑥𝑘) = ((∗‘𝐴)↑𝑘))
5756oveq2d 5941 . . . . . . . . 9 (𝑥 = (∗‘𝐴) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5857sumeq2sdv 11552 . . . . . . . 8 (𝑥 = (∗‘𝐴) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
5949cjcld 11122 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (∗‘𝐴) ∈ ℂ)
6059adantr 276 . . . . . . . . . . 11 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (∗‘𝐴) ∈ ℂ)
6160, 24expcld 10782 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((∗‘𝐴)↑𝑘) ∈ ℂ)
6226, 61mulcld 8064 . . . . . . . . 9 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
638, 62fsumcl 11582 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)) ∈ ℂ)
6445, 58, 59, 63fvmptd3 5658 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6564adantr 276 . . . . . 6 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → ((𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6655, 65eqtrd 2229 . . . . 5 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹‘(∗‘𝐴)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((∗‘𝐴)↑𝑘)))
6742, 54, 663eqtr4d 2239 . . . 4 ((((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
6867ex 115 . . 3 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
6968rexlimdvva 2622 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((ℝ ∪ {0}) ↑𝑚0)𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴))))
704, 69mpd 13 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3623  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  cc 7894  cr 7895  0cc0 7896   · cmul 7901  0cn0 9266  ...cfz 10100  cexp 10647  ccj 11021  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plyreres  15084
  Copyright terms: Public domain W3C validator