| Intuitionistic Logic Explorer Theorem List (p. 155 of 162) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rplogcl 15401 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0 15402 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴)) | ||
| Theorem | logdivlti 15403 | The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴)) | ||
| Theorem | relogcld 15404 | Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ) | ||
| Theorem | reeflogd 15405 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) | ||
| Theorem | relogmuld 15406 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
| Theorem | relogdivd 15407 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
| Theorem | logled 15408 | Natural logarithm preserves ≤. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
| Theorem | relogefd 15409 | Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(exp‘𝐴)) = 𝐴) | ||
| Theorem | rplogcld 15410 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (log‘𝐴) ∈ ℝ+) | ||
| Theorem | logge0d 15411 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (log‘𝐴)) | ||
| Theorem | logge0b 15412 | The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴)) | ||
| Theorem | loggt0b 15413 | The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logle1b 15414 | The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e)) | ||
| Theorem | loglt1b 15415 | The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e)) | ||
| Theorem | rpcxpef 15416 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
| Theorem | cxpexprp 15417 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | cxpexpnn 15418 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | logcxp 15419 | Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | rpcxp0 15420 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐0) = 1) | ||
| Theorem | rpcxp1 15421 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxp 15422 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1) | ||
| Theorem | ecxp 15423 | Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴)) | ||
| Theorem | rpcncxpcl 15424 | Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | rpcxpcl 15425 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | cxpap0 15426 | Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) # 0) | ||
| Theorem | rpcxpadd 15427 | Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
| Theorem | rpcxpp1 15428 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
| Theorem | rpcxpneg 15429 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpsub 15430 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
| Theorem | rpmulcxp 15431 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
| Theorem | cxprec 15432 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | rpdivcxp 15433 | Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) / (𝐵↑𝑐𝐶))) | ||
| Theorem | cxpmul 15434 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
| Theorem | rpcxpmul2 15435 | Product of exponents law for complex exponentiation. Variation on cxpmul 15434 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | rpcxproot 15436 | The complex power function allows us to write n-th roots via the idiom 𝐴↑𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑐(1 / 𝑁))↑𝑁) = 𝐴) | ||
| Theorem | abscxp 15437 | Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴↑𝑐𝐵)) = (𝐴↑𝑐(ℜ‘𝐵))) | ||
| Theorem | cxplt 15438 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
| Theorem | cxple 15439 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
| Theorem | rpcxple2 15440 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) | ||
| Theorem | rpcxplt2 15441 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
| Theorem | cxplt3 15442 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3 15443 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpsqrt 15444 | The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) | ||
| Theorem | logsqrt 15445 | Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2)) | ||
| Theorem | rpcxp0d 15446 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑐0) = 1) | ||
| Theorem | rpcxp1d 15447 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxpd 15448 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1↑𝑐𝐴) = 1) | ||
| Theorem | rpcncxpcld 15449 | Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | cxpltd 15450 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpled 15451 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
| Theorem | rpcxpsqrtth 15452 | Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11392. (Contributed by AV, 23-Dec-2022.) |
| ⊢ (𝐴 ∈ ℝ+ → ((√‘𝐴)↑𝑐2) = 𝐴) | ||
| Theorem | cxprecd 15453 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpmul2d 15454 | Product of exponents law for complex exponentiation. Variation on cxpmul 15434 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | rpcxpcld 15455 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | logcxpd 15456 | Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | cxplt3d 15457 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3d 15458 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpmuld 15459 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
| Theorem | cxpcom 15460 | Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶)↑𝑐𝐵)) | ||
| Theorem | apcxp2 15461 | Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) | ||
| Theorem | rpabscxpbnd 15462 | Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 0 < (ℜ‘𝐵)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 𝑀) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π)))) | ||
| Theorem | ltexp2 15463 | Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
| Theorem | ltexp2d 15464 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
Define "log using an arbitrary base" function and then prove some of its properties. As with df-relog 15380 this is for real logarithms rather than complex logarithms. Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log". There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb ‘𝐵)‘𝑋); that looks a little more like traditional notation. | ||
| Syntax | clogb 15465 | Extend class notation to include the logarithm generalized to an arbitrary base. |
| class logb | ||
| Definition | df-logb 15466* | Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.) |
| ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | ||
| Theorem | rplogbval 15467 | Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | ||
| Theorem | rplogbcl 15468 | General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | rplogbid1 15469 | General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) → (𝐴 logb 𝐴) = 1) | ||
| Theorem | rplogb1 15470 | The logarithm of 1 to an arbitrary base 𝐵 is 0. Property 1(b) of [Cohen4] p. 361. See log1 15388. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) → (𝐵 logb 1) = 0) | ||
| Theorem | rpelogb 15471 | The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (e logb 𝐴) = (log‘𝐴)) | ||
| Theorem | rplogbchbase 15472 | Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴))) | ||
| Theorem | relogbval 15473 | Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | ||
| Theorem | relogbzcl 15474 | Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | rplogbreexp 15475 | Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) | ||
| Theorem | rplogbzexp 15476 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐵 logb (𝐶↑𝑁)) = (𝑁 · (𝐵 logb 𝐶))) | ||
| Theorem | rprelogbmul 15477 | The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) | ||
| Theorem | rprelogbmulexp 15478 | The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶↑𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶)))) | ||
| Theorem | rprelogbdiv 15479 | The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) | ||
| Theorem | relogbexpap 15480 | Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | nnlogbexp 15481 | Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | logbrec 15482 | Logarithm of a reciprocal changes sign. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴)) | ||
| Theorem | logbleb 15483 | The general logarithm function is monotone/increasing. See logleb 15397. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))) | ||
| Theorem | logblt 15484 | The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15396. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) | ||
| Theorem | rplogbcxp 15485 | Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑋)) = 𝑋) | ||
| Theorem | rpcxplogb 15486 | Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | ||
| Theorem | relogbcxpbap 15487 | The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) | ||
| Theorem | logbgt0b 15488 | The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logbgcd1irr 15489 | The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ). (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | logbgcd1irraplemexp 15490 | Lemma for logbgcd1irrap 15492. Apartness of 𝑋↑𝑁 and 𝐵↑𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) | ||
| Theorem | logbgcd1irraplemap 15491 | Lemma for logbgcd1irrap 15492. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) | ||
| Theorem | logbgcd1irrap 15492 | The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.) |
| ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄) | ||
| Theorem | 2logb9irr 15493 | Example for logbgcd1irr 15489. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15499 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | logbprmirr 15494 | The logarithm of a prime to a different prime base is not rational. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 15495). (Contributed by AV, 31-Dec-2022.) |
| ⊢ ((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | 2logb3irr 15495 | Example for logbprmirr 15494. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.) |
| ⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | ||
| Theorem | 2logb9irrALT 15496 | Alternate proof of 2logb9irr 15493: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | sqrt2cxp2logb9e3 15497 | The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12536 resp. 2logb9irr 15493), satisfying the statement in 2irrexpq 15498. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | ||
| Theorem | 2irrexpq 15498* |
There exist real numbers 𝑎 and 𝑏 which are not rational
such
that (𝑎↑𝑏) is rational. Statement in the
Metamath book, section
1.1.5, footnote 27 on page 17, and the "constructive proof"
for theorem
1.2 of [Bauer], p. 483. This is a
constructive proof because it is
based on two explicitly named non-rational numbers (√‘2) and
(2 logb 9), see sqrt2irr0 12536, 2logb9irr 15493 and
sqrt2cxp2logb9e3 15497. Therefore, this proof is acceptable/usable
in
intuitionistic logic.
For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15500. (Contributed by AV, 23-Dec-2022.) |
| ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
| Theorem | 2logb9irrap 15499 | Example for logbgcd1irrap 15492. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
| ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) | ||
| Theorem | 2irrexpqap 15500* | There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12552, 2logb9irrap 15499 and sqrt2cxp2logb9e3 15497. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
| ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |