Theorem List for Intuitionistic Logic Explorer - 15401-15500 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ply1termlem 15401* |
Lemma for ply1term 15402. (Contributed by Mario Carneiro,
26-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
| |
| Theorem | ply1term 15402* |
A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
| |
| Theorem | plypow 15403* |
A power is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyconst 15404 |
A constant function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyid 15405 |
The identity function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp
∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddlem1 15406* |
Derive the coefficient function for the sum of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plymullem1 15407* |
Derive the coefficient function for the product of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
| |
| Theorem | plyaddlem 15408* |
Lemma for plyadd 15410. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymullem 15409* |
Lemma for plymul 15411. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyadd 15410* |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymul 15411* |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plysub 15412* |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddcl 15413 |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plymulcl 15414 |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plysubcl 15415 |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 − 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plycoeid3 15416* |
Reconstruct a polynomial as an explicit sum of the coefficient function
up to an index no smaller than the degree of the polynomial.
(Contributed by Jim Kingdon, 17-Oct-2025.)
|
| ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |
| |
| Theorem | plycolemc 15417* |
Lemma for plyco 15418. The result expressed as a sum, with a
degree and
coefficients for 𝐹 specified as hypotheses.
(Contributed by Jim
Kingdon, 20-Sep-2025.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyco 15418* |
The composition of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro,
23-Aug-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plycjlemc 15419* |
Lemma for plycj 15420. (Contributed by Mario Carneiro,
24-Jul-2014.)
(Revised by Jim Kingdon, 22-Sep-2025.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plycj 15420* |
The double conjugation of a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on (∗‘𝑧)
independently of 𝑧.) (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆)
& ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| |
| Theorem | plycn 15421 |
A polynomial is a continuous function. (Contributed by Mario Carneiro,
23-Jul-2014.) Avoid ax-mulf 8110. (Revised by GG, 16-Mar-2025.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |
| |
| Theorem | plyrecj 15422 |
A polynomial with real coefficients distributes under conjugation.
(Contributed by Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) →
(∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
| |
| Theorem | plyreres 15423 |
Real-coefficient polynomials restrict to real functions. (Contributed
by Stefan O'Rear, 16-Nov-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾
ℝ):ℝ⟶ℝ) |
| |
| Theorem | dvply1 15424* |
Derivative of a polynomial, explicit sum version. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |
| |
| Theorem | dvply2g 15425 |
The derivative of a polynomial with coefficients in a subring is a
polynomial with coefficients in the same ring. (Contributed by Mario
Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
|
| ⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |
| |
| Theorem | dvply2 15426 |
The derivative of a polynomial is a polynomial. (Contributed by Stefan
O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro,
1-Jan-2017.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈
(Poly‘ℂ)) |
| |
| 11.2 Basic trigonometry
|
| |
| 11.2.1 The exponential, sine, and cosine
functions (cont.)
|
| |
| Theorem | efcn 15427 |
The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ exp ∈ (ℂ–cn→ℂ) |
| |
| Theorem | sincn 15428 |
Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ sin ∈ (ℂ–cn→ℂ) |
| |
| Theorem | coscn 15429 |
Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ cos ∈ (ℂ–cn→ℂ) |
| |
| Theorem | reeff1olem 15430* |
Lemma for reeff1o 15432. (Contributed by Paul Chapman,
18-Oct-2007.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1oleme 15431* |
Lemma for reeff1o 15432. (Contributed by Jim Kingdon, 15-May-2024.)
|
| ⊢ (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1o 15432 |
The real exponential function is one-to-one onto. (Contributed by Paul
Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| |
| Theorem | efltlemlt 15433 |
Lemma for eflt 15434. The converse of efltim 12195 plus the epsilon-delta
setup. (Contributed by Jim Kingdon, 22-May-2024.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (exp‘𝐴) < (exp‘𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
⇒ ⊢ (𝜑 → 𝐴 < 𝐵) |
| |
| Theorem | eflt 15434 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
21-May-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | efle 15435 |
The exponential function on the reals is nondecreasing. (Contributed by
Mario Carneiro, 11-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
| |
| Theorem | reefiso 15436 |
The exponential function on the reals determines an isomorphism from
reals onto positive reals. (Contributed by Steve Rodriguez,
25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
|
| ⊢ (exp ↾ ℝ) Isom < , <
(ℝ, ℝ+) |
| |
| Theorem | reapef 15437 |
Apartness and the exponential function for reals. (Contributed by Jim
Kingdon, 11-Jul-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵))) |
| |
| 11.2.2 Properties of pi =
3.14159...
|
| |
| Theorem | pilem1 15438 |
Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.)
|
| ⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧
(sin‘𝐴) =
0)) |
| |
| Theorem | cosz12 15439 |
Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and
Jim Kingdon, 7-Mar-2024.)
|
| ⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |
| |
| Theorem | sin0pilem1 15440* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
| ⊢ ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)) |
| |
| Theorem | sin0pilem2 15441* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
| ⊢ ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
| |
| Theorem | pilem3 15442 |
Lemma for pi related theorems. (Contributed by Jim Kingdon,
9-Mar-2024.)
|
| ⊢ (π ∈ (2(,)4) ∧ (sin‘π)
= 0) |
| |
| Theorem | pigt2lt4 15443 |
π is between 2 and 4. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
| ⊢ (2 < π ∧ π <
4) |
| |
| Theorem | sinpi 15444 |
The sine of π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘π) = 0 |
| |
| Theorem | pire 15445 |
π is a real number. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ π ∈ ℝ |
| |
| Theorem | picn 15446 |
π is a complex number. (Contributed by David A.
Wheeler,
6-Dec-2018.)
|
| ⊢ π ∈ ℂ |
| |
| Theorem | pipos 15447 |
π is positive. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
| ⊢ 0 < π |
| |
| Theorem | pirp 15448 |
π is a positive real. (Contributed by Glauco
Siliprandi,
11-Dec-2019.)
|
| ⊢ π ∈
ℝ+ |
| |
| Theorem | negpicn 15449 |
-π is a real number. (Contributed by David A.
Wheeler,
8-Dec-2018.)
|
| ⊢ -π ∈ ℂ |
| |
| Theorem | sinhalfpilem 15450 |
Lemma for sinhalfpi 15455 and coshalfpi 15456. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ ((sin‘(π / 2)) = 1 ∧
(cos‘(π / 2)) = 0) |
| |
| Theorem | halfpire 15451 |
π / 2 is real. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (π / 2) ∈ ℝ |
| |
| Theorem | neghalfpire 15452 |
-π / 2 is real. (Contributed by David A. Wheeler,
8-Dec-2018.)
|
| ⊢ -(π / 2) ∈ ℝ |
| |
| Theorem | neghalfpirx 15453 |
-π / 2 is an extended real. (Contributed by David
A. Wheeler,
8-Dec-2018.)
|
| ⊢ -(π / 2) ∈
ℝ* |
| |
| Theorem | pidiv2halves 15454 |
Adding π / 2 to itself gives π. See 2halves 9328.
(Contributed by David A. Wheeler, 8-Dec-2018.)
|
| ⊢ ((π / 2) + (π / 2)) =
π |
| |
| Theorem | sinhalfpi 15455 |
The sine of π / 2 is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘(π / 2)) = 1 |
| |
| Theorem | coshalfpi 15456 |
The cosine of π / 2 is 0. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘(π / 2)) = 0 |
| |
| Theorem | cosneghalfpi 15457 |
The cosine of -π / 2 is zero. (Contributed by David
Moews,
28-Feb-2017.)
|
| ⊢ (cos‘-(π / 2)) = 0 |
| |
| Theorem | efhalfpi 15458 |
The exponential of iπ / 2 is i. (Contributed by Mario
Carneiro, 9-May-2014.)
|
| ⊢ (exp‘(i · (π / 2))) =
i |
| |
| Theorem | cospi 15459 |
The cosine of π is -1.
(Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘π) = -1 |
| |
| Theorem | efipi 15460 |
The exponential of i · π is -1. (Contributed by Paul
Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ (exp‘(i · π)) =
-1 |
| |
| Theorem | eulerid 15461 |
Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised
by Mario Carneiro, 9-May-2014.)
|
| ⊢ ((exp‘(i · π)) + 1) =
0 |
| |
| Theorem | sin2pi 15462 |
The sine of 2π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘(2 · π)) =
0 |
| |
| Theorem | cos2pi 15463 |
The cosine of 2π is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘(2 · π)) =
1 |
| |
| Theorem | ef2pi 15464 |
The exponential of 2πi is 1.
(Contributed by Mario
Carneiro, 9-May-2014.)
|
| ⊢ (exp‘(i · (2 · π))) =
1 |
| |
| Theorem | ef2kpi 15465 |
If 𝐾 is an integer, then the exponential
of 2𝐾πi is 1.
(Contributed by Mario Carneiro, 9-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (exp‘((i
· (2 · π)) · 𝐾)) = 1) |
| |
| Theorem | efper 15466 |
The exponential function is periodic. (Contributed by Paul Chapman,
21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 ·
π)) · 𝐾))) =
(exp‘𝐴)) |
| |
| Theorem | sinperlem 15467 |
Lemma for sinper 15468 and cosper 15469. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈
ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) =
(((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) |
| |
| Theorem | sinper 15468 |
The sine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) =
(sin‘𝐴)) |
| |
| Theorem | cosper 15469 |
The cosine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) =
(cos‘𝐴)) |
| |
| Theorem | sin2kpi 15470 |
If 𝐾 is an integer, then the sine of
2𝐾π is 0. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) =
0) |
| |
| Theorem | cos2kpi 15471 |
If 𝐾 is an integer, then the cosine of
2𝐾π is 1. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) =
1) |
| |
| Theorem | sin2pim 15472 |
Sine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘((2
· π) − 𝐴))
= -(sin‘𝐴)) |
| |
| Theorem | cos2pim 15473 |
Cosine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘((2
· π) − 𝐴))
= (cos‘𝐴)) |
| |
| Theorem | sinmpi 15474 |
Sine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) =
-(sin‘𝐴)) |
| |
| Theorem | cosmpi 15475 |
Cosine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) =
-(cos‘𝐴)) |
| |
| Theorem | sinppi 15476 |
Sine of a number plus π. (Contributed by NM,
10-Aug-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) |
| |
| Theorem | cosppi 15477 |
Cosine of a number plus π. (Contributed by NM,
18-Aug-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) |
| |
| Theorem | efimpi 15478 |
The exponential function at i times a real number less
π.
(Contributed by Paul Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘(i
· (𝐴 −
π))) = -(exp‘(i · 𝐴))) |
| |
| Theorem | sinhalfpip 15479 |
The sine of π / 2 plus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘((π /
2) + 𝐴)) =
(cos‘𝐴)) |
| |
| Theorem | sinhalfpim 15480 |
The sine of π / 2 minus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘((π /
2) − 𝐴)) =
(cos‘𝐴)) |
| |
| Theorem | coshalfpip 15481 |
The cosine of π / 2 plus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘((π /
2) + 𝐴)) =
-(sin‘𝐴)) |
| |
| Theorem | coshalfpim 15482 |
The cosine of π / 2 minus a number. (Contributed by
Paul Chapman,
24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘((π /
2) − 𝐴)) =
(sin‘𝐴)) |
| |
| Theorem | ptolemy 15483 |
Ptolemy's Theorem. This theorem is named after the Greek astronomer and
mathematician Ptolemy (Claudius Ptolemaeus). This particular version is
expressed using the sine function. It is proved by expanding all the
multiplication of sines to a product of cosines of differences using
sinmul 12241, then using algebraic simplification to show
that both sides are
equal. This formalization is based on the proof in
"Trigonometry" by
Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David
A. Wheeler, 31-May-2015.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) |
| |
| Theorem | sincosq1lem 15484 |
Lemma for sincosq1sgn 15485. (Contributed by Paul Chapman,
24-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 <
(sin‘𝐴)) |
| |
| Theorem | sincosq1sgn 15485 |
The signs of the sine and cosine functions in the first quadrant.
(Contributed by Paul Chapman, 24-Jan-2008.)
|
| ⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 <
(sin‘𝐴) ∧ 0 <
(cos‘𝐴))) |
| |
| Theorem | sincosq2sgn 15486 |
The signs of the sine and cosine functions in the second quadrant.
(Contributed by Paul Chapman, 24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ((π / 2)(,)π) → (0 <
(sin‘𝐴) ∧
(cos‘𝐴) <
0)) |
| |
| Theorem | sincosq3sgn 15487 |
The signs of the sine and cosine functions in the third quadrant.
(Contributed by Paul Chapman, 24-Jan-2008.)
|
| ⊢ (𝐴 ∈ (π(,)(3 · (π / 2)))
→ ((sin‘𝐴) <
0 ∧ (cos‘𝐴) <
0)) |
| |
| Theorem | sincosq4sgn 15488 |
The signs of the sine and cosine functions in the fourth quadrant.
(Contributed by Paul Chapman, 24-Jan-2008.)
|
| ⊢ (𝐴 ∈ ((3 · (π / 2))(,)(2
· π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴))) |
| |
| Theorem | sinq12gt0 15489 |
The sine of a number strictly between 0 and π is positive.
(Contributed by Paul Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ (0(,)π) → 0 <
(sin‘𝐴)) |
| |
| Theorem | sinq34lt0t 15490 |
The sine of a number strictly between π and 2 · π is
negative. (Contributed by NM, 17-Aug-2008.)
|
| ⊢ (𝐴 ∈ (π(,)(2 · π)) →
(sin‘𝐴) <
0) |
| |
| Theorem | cosq14gt0 15491 |
The cosine of a number strictly between -π / 2 and
π / 2 is
positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
|
| ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0
< (cos‘𝐴)) |
| |
| Theorem | cosq23lt0 15492 |
The cosine of a number in the second and third quadrants is negative.
(Contributed by Jim Kingdon, 14-Mar-2024.)
|
| ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π /
2))) → (cos‘𝐴)
< 0) |
| |
| Theorem | coseq0q4123 15493 |
Location of the zeroes of cosine in
(-(π / 2)(,)(3 · (π / 2))).
(Contributed by Jim
Kingdon, 14-Mar-2024.)
|
| ⊢ (𝐴 ∈ (-(π / 2)(,)(3 · (π /
2))) → ((cos‘𝐴)
= 0 ↔ 𝐴 = (π /
2))) |
| |
| Theorem | coseq00topi 15494 |
Location of the zeroes of cosine in (0[,]π).
(Contributed by
David Moews, 28-Feb-2017.)
|
| ⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) |
| |
| Theorem | coseq0negpitopi 15495 |
Location of the zeroes of cosine in (-π(,]π).
(Contributed
by David Moews, 28-Feb-2017.)
|
| ⊢ (𝐴 ∈ (-π(,]π) →
((cos‘𝐴) = 0 ↔
𝐴 ∈ {(π / 2),
-(π / 2)})) |
| |
| Theorem | tanrpcl 15496 |
Positive real closure of the tangent function. (Contributed by Mario
Carneiro, 29-Jul-2014.)
|
| ⊢ (𝐴 ∈ (0(,)(π / 2)) →
(tan‘𝐴) ∈
ℝ+) |
| |
| Theorem | tangtx 15497 |
The tangent function is greater than its argument on positive reals in its
principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
|
| ⊢ (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴)) |
| |
| Theorem | sincosq1eq 15498 |
Complementarity of the sine and cosine functions in the first quadrant.
(Contributed by Paul Chapman, 25-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π /
2)))) |
| |
| Theorem | sincos4thpi 15499 |
The sine and cosine of π / 4. (Contributed by Paul
Chapman,
25-Jan-2008.)
|
| ⊢ ((sin‘(π / 4)) = (1 /
(√‘2)) ∧ (cos‘(π / 4)) = (1 /
(√‘2))) |
| |
| Theorem | tan4thpi 15500 |
The tangent of π / 4. (Contributed by Mario
Carneiro,
5-Apr-2015.)
|
| ⊢ (tan‘(π / 4)) = 1 |