HomeHome Intuitionistic Logic Explorer
Theorem List (p. 155 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15401-15500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvmptaddx 15401* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
 
Theoremdvmptmulx 15402* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
 
Theoremdvmptcmulcn 15403* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵)))
 
Theoremdvmptnegcn 15404* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵))
 
Theoremdvmptsubcn 15405* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐷𝑊)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵𝐷)))
 
Theoremdvmptcjx 15406* Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋 ⊆ ℝ)       (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
 
Theoremdvmptfsum 15407* Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
𝐽 = (𝐾t 𝑆)    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝐽)    &   (𝜑𝐼 ∈ Fin)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)    &   ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
 
Theoremdveflem 15408 Derivative of the exponential function at 0. The key step in the proof is eftlub 12209, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
0(ℂ D exp)1
 
Theoremdvef 15409 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
(ℂ D exp) = exp
 
PART 11  BASIC REAL AND COMPLEX FUNCTIONS
 
11.1  Polynomials
 
11.1.1  Elementary properties of complex polynomials
 
Syntaxcply 15410 Extend class notation to include the set of complex polynomials.
class Poly
 
Syntaxcidp 15411 Extend class notation to include the identity polynomial.
class Xp
 
Definitiondf-ply 15412* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Definitiondf-idp 15413 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Xp = ( I ↾ ℂ)
 
Theoremplyval 15414* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Theoremplybss 15415 Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
 
Theoremelply 15416* Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
 
Theoremelply2 15417* The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Theoremplyun0 15418 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
(Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
 
Theoremplyf 15419 A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
 
Theoremplyss 15420 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
 
Theoremplyssc 15421 Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
(Poly‘𝑆) ⊆ (Poly‘ℂ)
 
Theoremelplyr 15422* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremelplyd 15423* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremply1termlem 15424* Lemma for ply1term 15425. (Contributed by Mario Carneiro, 26-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
 
Theoremply1term 15425* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
 
Theoremplypow 15426* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧𝑁)) ∈ (Poly‘𝑆))
 
Theoremplyconst 15427 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))
 
Theoremplyid 15428 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆))
 
Theoremplyaddlem1 15429* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
 
Theoremplymullem1 15430* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
 
Theoremplyaddlem 15431* Lemma for plyadd 15433. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymullem 15432* Lemma for plymul 15434. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplyadd 15433* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymul 15434* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplysub 15435* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑 → -1 ∈ 𝑆)       (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
 
Theoremplyaddcl 15436 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) ∈ (Poly‘ℂ))
 
Theoremplymulcl 15437 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
 
Theoremplysubcl 15438 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓𝐺) ∈ (Poly‘ℂ))
 
Theoremplycoeid3 15439* Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
(𝜑𝐷 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝑀 ∈ (ℤ𝐷))    &   (𝜑𝑋 ∈ ℂ)       (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
 
Theoremplycolemc 15440* Lemma for plyco 15441. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
 
Theoremplyco 15441* The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
 
Theoremplycjlemc 15442* Lemma for plycj 15443. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
(𝜑𝑁 ∈ ℕ0)    &   𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
 
Theoremplycj 15443* The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 ∈ (Poly‘𝑆))
 
Theoremplycn 15444 A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8130. (Revised by GG, 16-Mar-2025.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremplyrecj 15445 A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
 
Theoremplyreres 15446 Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
 
Theoremdvply1 15447* Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (ℂ D 𝐹) = 𝐺)
 
Theoremdvply2g 15448 The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
 
Theoremdvply2 15449 The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
(𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ))
 
11.2  Basic trigonometry
 
11.2.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 15450 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
exp ∈ (ℂ–cn→ℂ)
 
Theoremsincn 15451 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
sin ∈ (ℂ–cn→ℂ)
 
Theoremcoscn 15452 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
cos ∈ (ℂ–cn→ℂ)
 
Theoremreeff1olem 15453* Lemma for reeff1o 15455. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1oleme 15454* Lemma for reeff1o 15455. (Contributed by Jim Kingdon, 15-May-2024.)
(𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1o 15455 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
(exp ↾ ℝ):ℝ–1-1-onto→ℝ+
 
Theoremefltlemlt 15456 Lemma for eflt 15457. The converse of efltim 12217 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (exp‘𝐴) < (exp‘𝐵))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))       (𝜑𝐴 < 𝐵)
 
Theoremeflt 15457 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
 
Theoremefle 15458 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵)))
 
Theoremreefiso 15459 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
(exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
 
Theoremreapef 15460 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵)))
 
11.2.2  Properties of pi = 3.14159...
 
Theorempilem1 15461 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
 
Theoremcosz12 15462 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
Theoremsin0pilem1 15463* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
Theoremsin0pilem2 15464* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
Theorempilem3 15465 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
Theorempigt2lt4 15466 π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(2 < π ∧ π < 4)
 
Theoremsinpi 15467 The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘π) = 0
 
Theorempire 15468 π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
π ∈ ℝ
 
Theorempicn 15469 π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
π ∈ ℂ
 
Theorempipos 15470 π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
0 < π
 
Theorempirp 15471 π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
π ∈ ℝ+
 
Theoremnegpicn 15472 is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
-π ∈ ℂ
 
Theoremsinhalfpilem 15473 Lemma for sinhalfpi 15478 and coshalfpi 15479. (Contributed by Paul Chapman, 23-Jan-2008.)
((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
 
Theoremhalfpire 15474 π / 2 is real. (Contributed by David Moews, 28-Feb-2017.)
(π / 2) ∈ ℝ
 
Theoremneghalfpire 15475 -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ
 
Theoremneghalfpirx 15476 -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ*
 
Theorempidiv2halves 15477 Adding π / 2 to itself gives π. See 2halves 9348. (Contributed by David A. Wheeler, 8-Dec-2018.)
((π / 2) + (π / 2)) = π
 
Theoremsinhalfpi 15478 The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(π / 2)) = 1
 
Theoremcoshalfpi 15479 The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(π / 2)) = 0
 
Theoremcosneghalfpi 15480 The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.)
(cos‘-(π / 2)) = 0
 
Theoremefhalfpi 15481 The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (π / 2))) = i
 
Theoremcospi 15482 The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘π) = -1
 
Theoremefipi 15483 The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(exp‘(i · π)) = -1
 
Theoremeulerid 15484 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
((exp‘(i · π)) + 1) = 0
 
Theoremsin2pi 15485 The sine of is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(2 · π)) = 0
 
Theoremcos2pi 15486 The cosine of is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(2 · π)) = 1
 
Theoremef2pi 15487 The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (2 · π))) = 1
 
Theoremef2kpi 15488 If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)
 
Theoremefper 15489 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴))
 
Theoremsinperlem 15490 Lemma for sinper 15491 and cosper 15492. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))    &   ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))       ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
 
Theoremsinper 15491 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴))
 
Theoremcosper 15492 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴))
 
Theoremsin2kpi 15493 If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0)
 
Theoremcos2kpi 15494 If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
 
Theoremsin2pim 15495 Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴))
 
Theoremcos2pim 15496 Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴))
 
Theoremsinmpi 15497 Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
 
Theoremcosmpi 15498 Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴))
 
Theoremsinppi 15499 Sine of a number plus π. (Contributed by NM, 10-Aug-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴))
 
Theoremcosppi 15500 Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >