Theorem List for Intuitionistic Logic Explorer - 15401-15500 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | dvmptaddx 15401* |
Function-builder for derivative, addition rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) |
| |
| Theorem | dvmptmulx 15402* |
Function-builder for derivative, product rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
|
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
| |
| Theorem | dvmptcmulcn 15403* |
Function-builder for derivative, product rule for constant multiplier.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵))) |
| |
| Theorem | dvmptnegcn 15404* |
Function-builder for derivative, product rule for negatives.
(Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵)) |
| |
| Theorem | dvmptsubcn 15405* |
Function-builder for derivative, subtraction rule. (Contributed by
Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon,
31-Dec-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊)
& ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) ⇒ ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
| |
| Theorem | dvmptcjx 15406* |
Function-builder for derivative, conjugate rule. (Contributed by Mario
Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑋 ⊆ ℝ)
⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| |
| Theorem | dvmptfsum 15407* |
Function-builder for derivative, finite sums rule. (Contributed by
Stefan O'Rear, 12-Nov-2014.)
|
| ⊢ 𝐽 = (𝐾 ↾t 𝑆)
& ⊢ 𝐾 =
(TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽)
& ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |
| |
| Theorem | dveflem 15408 |
Derivative of the exponential function at 0. The key step in the proof
is eftlub 12209, to show that
abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4).
(Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario
Carneiro, 28-Dec-2016.)
|
| ⊢ 0(ℂ D exp)1 |
| |
| Theorem | dvef 15409 |
Derivative of the exponential function. (Contributed by Mario Carneiro,
9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
|
| ⊢ (ℂ D exp) = exp |
| |
| PART 11 BASIC REAL AND COMPLEX
FUNCTIONS
|
| |
| 11.1 Polynomials
|
| |
| 11.1.1 Elementary properties of complex
polynomials
|
| |
| Syntax | cply 15410 |
Extend class notation to include the set of complex polynomials.
|
| class Poly |
| |
| Syntax | cidp 15411 |
Extend class notation to include the identity polynomial.
|
| class Xp |
| |
| Definition | df-ply 15412* |
Define the set of polynomials on the complex numbers with coefficients
in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| |
| Definition | df-idp 15413 |
Define the identity polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ Xp = ( I ↾
ℂ) |
| |
| Theorem | plyval 15414* |
Value of the polynomial set function. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| |
| Theorem | plybss 15415 |
Reverse closure of the parameter 𝑆 of the polynomial set function.
(Contributed by Mario Carneiro, 22-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| |
| Theorem | elply 15416* |
Definition of a polynomial with coefficients in 𝑆. (Contributed by
Mario Carneiro, 17-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| |
| Theorem | elply2 15417* |
The coefficient function can be assumed to have zeroes outside
0...𝑛. (Contributed by Mario Carneiro,
20-Jul-2014.) (Revised
by Mario Carneiro, 23-Aug-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| |
| Theorem | plyun0 15418 |
The set of polynomials is unaffected by the addition of zero. (This is
built into the definition because all higher powers of a polynomial are
effectively zero, so we require that the coefficient field contain zero
to simplify some of our closure theorems.) (Contributed by Mario
Carneiro, 17-Jul-2014.)
|
| ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| |
| Theorem | plyf 15419 |
A polynomial is a function on the complex numbers. (Contributed by
Mario Carneiro, 22-Jul-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| |
| Theorem | plyss 15420 |
The polynomial set function preserves the subset relation. (Contributed
by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |
| |
| Theorem | plyssc 15421 |
Every polynomial ring is contained in the ring of polynomials over
ℂ. (Contributed by Mario Carneiro,
22-Jul-2014.)
|
| ⊢ (Poly‘𝑆) ⊆
(Poly‘ℂ) |
| |
| Theorem | elplyr 15422* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario
Carneiro, 23-Aug-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | elplyd 15423* |
Sufficient condition for elementhood in the set of polynomials.
(Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | ply1termlem 15424* |
Lemma for ply1term 15425. (Contributed by Mario Carneiro,
26-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
| |
| Theorem | ply1term 15425* |
A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
|
| ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
| |
| Theorem | plypow 15426* |
A power is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyconst 15427 |
A constant function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyid 15428 |
The identity function is a polynomial. (Contributed by Mario Carneiro,
17-Jul-2014.)
|
| ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp
∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddlem1 15429* |
Derive the coefficient function for the sum of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plymullem1 15430* |
Derive the coefficient function for the product of two polynomials.
(Contributed by Mario Carneiro, 23-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
| |
| Theorem | plyaddlem 15431* |
Lemma for plyadd 15433. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymullem 15432* |
Lemma for plymul 15434. (Contributed by Mario Carneiro,
21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))
& ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyadd 15433* |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plymul 15434* |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plysub 15435* |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyaddcl 15436 |
The sum of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plymulcl 15437 |
The product of two polynomials is a polynomial. (Contributed by Mario
Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plysubcl 15438 |
The difference of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 − 𝐺) ∈
(Poly‘ℂ)) |
| |
| Theorem | plycoeid3 15439* |
Reconstruct a polynomial as an explicit sum of the coefficient function
up to an index no smaller than the degree of the polynomial.
(Contributed by Jim Kingdon, 17-Oct-2025.)
|
| ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝐷 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))))
& ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |
| |
| Theorem | plycolemc 15440* |
Lemma for plyco 15441. The result expressed as a sum, with a
degree and
coefficients for 𝐹 specified as hypotheses.
(Contributed by Jim
Kingdon, 20-Sep-2025.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| |
| Theorem | plyco 15441* |
The composition of two polynomials is a polynomial. (Contributed by
Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro,
23-Aug-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
| |
| Theorem | plycjlemc 15442* |
Lemma for plycj 15443. (Contributed by Mario Carneiro,
24-Jul-2014.)
(Revised by Jim Kingdon, 22-Sep-2025.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| |
| Theorem | plycj 15443* |
The double conjugation of a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on (∗‘𝑧)
independently of 𝑧.) (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆)
& ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| |
| Theorem | plycn 15444 |
A polynomial is a continuous function. (Contributed by Mario Carneiro,
23-Jul-2014.) Avoid ax-mulf 8130. (Revised by GG, 16-Mar-2025.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |
| |
| Theorem | plyrecj 15445 |
A polynomial with real coefficients distributes under conjugation.
(Contributed by Mario Carneiro, 24-Jul-2014.)
|
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) →
(∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
| |
| Theorem | plyreres 15446 |
Real-coefficient polynomials restrict to real functions. (Contributed
by Stefan O'Rear, 16-Nov-2014.)
|
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾
ℝ):ℝ⟶ℝ) |
| |
| Theorem | dvply1 15447* |
Derivative of a polynomial, explicit sum version. (Contributed by
Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro,
11-Feb-2015.)
|
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |
| |
| Theorem | dvply2g 15448 |
The derivative of a polynomial with coefficients in a subring is a
polynomial with coefficients in the same ring. (Contributed by Mario
Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
|
| ⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |
| |
| Theorem | dvply2 15449 |
The derivative of a polynomial is a polynomial. (Contributed by Stefan
O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro,
1-Jan-2017.)
|
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈
(Poly‘ℂ)) |
| |
| 11.2 Basic trigonometry
|
| |
| 11.2.1 The exponential, sine, and cosine
functions (cont.)
|
| |
| Theorem | efcn 15450 |
The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ exp ∈ (ℂ–cn→ℂ) |
| |
| Theorem | sincn 15451 |
Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ sin ∈ (ℂ–cn→ℂ) |
| |
| Theorem | coscn 15452 |
Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.)
|
| ⊢ cos ∈ (ℂ–cn→ℂ) |
| |
| Theorem | reeff1olem 15453* |
Lemma for reeff1o 15455. (Contributed by Paul Chapman,
18-Oct-2007.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1oleme 15454* |
Lemma for reeff1o 15455. (Contributed by Jim Kingdon, 15-May-2024.)
|
| ⊢ (𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ
(exp‘𝑥) = 𝑈) |
| |
| Theorem | reeff1o 15455 |
The real exponential function is one-to-one onto. (Contributed by Paul
Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| |
| Theorem | efltlemlt 15456 |
Lemma for eflt 15457. The converse of efltim 12217 plus the epsilon-delta
setup. (Contributed by Jim Kingdon, 22-May-2024.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (exp‘𝐴) < (exp‘𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
⇒ ⊢ (𝜑 → 𝐴 < 𝐵) |
| |
| Theorem | eflt 15457 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
21-May-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | efle 15458 |
The exponential function on the reals is nondecreasing. (Contributed by
Mario Carneiro, 11-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
| |
| Theorem | reefiso 15459 |
The exponential function on the reals determines an isomorphism from
reals onto positive reals. (Contributed by Steve Rodriguez,
25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
|
| ⊢ (exp ↾ ℝ) Isom < , <
(ℝ, ℝ+) |
| |
| Theorem | reapef 15460 |
Apartness and the exponential function for reals. (Contributed by Jim
Kingdon, 11-Jul-2024.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵))) |
| |
| 11.2.2 Properties of pi =
3.14159...
|
| |
| Theorem | pilem1 15461 |
Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.)
|
| ⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧
(sin‘𝐴) =
0)) |
| |
| Theorem | cosz12 15462 |
Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and
Jim Kingdon, 7-Mar-2024.)
|
| ⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |
| |
| Theorem | sin0pilem1 15463* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
| ⊢ ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)) |
| |
| Theorem | sin0pilem2 15464* |
Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim
Kingdon, 8-Mar-2024.)
|
| ⊢ ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
| |
| Theorem | pilem3 15465 |
Lemma for pi related theorems. (Contributed by Jim Kingdon,
9-Mar-2024.)
|
| ⊢ (π ∈ (2(,)4) ∧ (sin‘π)
= 0) |
| |
| Theorem | pigt2lt4 15466 |
π is between 2 and 4. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
| ⊢ (2 < π ∧ π <
4) |
| |
| Theorem | sinpi 15467 |
The sine of π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘π) = 0 |
| |
| Theorem | pire 15468 |
π is a real number. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ π ∈ ℝ |
| |
| Theorem | picn 15469 |
π is a complex number. (Contributed by David A.
Wheeler,
6-Dec-2018.)
|
| ⊢ π ∈ ℂ |
| |
| Theorem | pipos 15470 |
π is positive. (Contributed by Paul Chapman,
23-Jan-2008.)
(Revised by Mario Carneiro, 9-May-2014.)
|
| ⊢ 0 < π |
| |
| Theorem | pirp 15471 |
π is a positive real. (Contributed by Glauco
Siliprandi,
11-Dec-2019.)
|
| ⊢ π ∈
ℝ+ |
| |
| Theorem | negpicn 15472 |
-π is a real number. (Contributed by David A.
Wheeler,
8-Dec-2018.)
|
| ⊢ -π ∈ ℂ |
| |
| Theorem | sinhalfpilem 15473 |
Lemma for sinhalfpi 15478 and coshalfpi 15479. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ ((sin‘(π / 2)) = 1 ∧
(cos‘(π / 2)) = 0) |
| |
| Theorem | halfpire 15474 |
π / 2 is real. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (π / 2) ∈ ℝ |
| |
| Theorem | neghalfpire 15475 |
-π / 2 is real. (Contributed by David A. Wheeler,
8-Dec-2018.)
|
| ⊢ -(π / 2) ∈ ℝ |
| |
| Theorem | neghalfpirx 15476 |
-π / 2 is an extended real. (Contributed by David
A. Wheeler,
8-Dec-2018.)
|
| ⊢ -(π / 2) ∈
ℝ* |
| |
| Theorem | pidiv2halves 15477 |
Adding π / 2 to itself gives π. See 2halves 9348.
(Contributed by David A. Wheeler, 8-Dec-2018.)
|
| ⊢ ((π / 2) + (π / 2)) =
π |
| |
| Theorem | sinhalfpi 15478 |
The sine of π / 2 is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘(π / 2)) = 1 |
| |
| Theorem | coshalfpi 15479 |
The cosine of π / 2 is 0. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘(π / 2)) = 0 |
| |
| Theorem | cosneghalfpi 15480 |
The cosine of -π / 2 is zero. (Contributed by David
Moews,
28-Feb-2017.)
|
| ⊢ (cos‘-(π / 2)) = 0 |
| |
| Theorem | efhalfpi 15481 |
The exponential of iπ / 2 is i. (Contributed by Mario
Carneiro, 9-May-2014.)
|
| ⊢ (exp‘(i · (π / 2))) =
i |
| |
| Theorem | cospi 15482 |
The cosine of π is -1.
(Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘π) = -1 |
| |
| Theorem | efipi 15483 |
The exponential of i · π is -1. (Contributed by Paul
Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ (exp‘(i · π)) =
-1 |
| |
| Theorem | eulerid 15484 |
Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised
by Mario Carneiro, 9-May-2014.)
|
| ⊢ ((exp‘(i · π)) + 1) =
0 |
| |
| Theorem | sin2pi 15485 |
The sine of 2π is 0. (Contributed by Paul Chapman,
23-Jan-2008.)
|
| ⊢ (sin‘(2 · π)) =
0 |
| |
| Theorem | cos2pi 15486 |
The cosine of 2π is 1. (Contributed by Paul
Chapman,
23-Jan-2008.)
|
| ⊢ (cos‘(2 · π)) =
1 |
| |
| Theorem | ef2pi 15487 |
The exponential of 2πi is 1.
(Contributed by Mario
Carneiro, 9-May-2014.)
|
| ⊢ (exp‘(i · (2 · π))) =
1 |
| |
| Theorem | ef2kpi 15488 |
If 𝐾 is an integer, then the exponential
of 2𝐾πi is 1.
(Contributed by Mario Carneiro, 9-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (exp‘((i
· (2 · π)) · 𝐾)) = 1) |
| |
| Theorem | efper 15489 |
The exponential function is periodic. (Contributed by Paul Chapman,
21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 ·
π)) · 𝐾))) =
(exp‘𝐴)) |
| |
| Theorem | sinperlem 15490 |
Lemma for sinper 15491 and cosper 15492. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈
ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) =
(((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) |
| |
| Theorem | sinper 15491 |
The sine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) =
(sin‘𝐴)) |
| |
| Theorem | cosper 15492 |
The cosine function is periodic. (Contributed by Paul Chapman,
23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) =
(cos‘𝐴)) |
| |
| Theorem | sin2kpi 15493 |
If 𝐾 is an integer, then the sine of
2𝐾π is 0. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) =
0) |
| |
| Theorem | cos2kpi 15494 |
If 𝐾 is an integer, then the cosine of
2𝐾π is 1. (Contributed
by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro,
10-May-2014.)
|
| ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) =
1) |
| |
| Theorem | sin2pim 15495 |
Sine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘((2
· π) − 𝐴))
= -(sin‘𝐴)) |
| |
| Theorem | cos2pim 15496 |
Cosine of a number subtracted from 2 · π.
(Contributed by Paul
Chapman, 15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘((2
· π) − 𝐴))
= (cos‘𝐴)) |
| |
| Theorem | sinmpi 15497 |
Sine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) =
-(sin‘𝐴)) |
| |
| Theorem | cosmpi 15498 |
Cosine of a number less π. (Contributed by Paul
Chapman,
15-Mar-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) =
-(cos‘𝐴)) |
| |
| Theorem | sinppi 15499 |
Sine of a number plus π. (Contributed by NM,
10-Aug-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) |
| |
| Theorem | cosppi 15500 |
Cosine of a number plus π. (Contributed by NM,
18-Aug-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) |