| Intuitionistic Logic Explorer Theorem List (p. 155 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisen 15401* | Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemsfi 15402* | Lemma for lgsquad 15407. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemofi 15403* | Lemma for lgsquad 15407. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem1 15404* | Lemma for lgsquad 15407. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)}))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem2 15405* | Lemma for lgsquad 15407. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 15404 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem3 15406* | Lemma for lgsquad 15407. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad 15407 | The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem1 15408 | Lemma for lgsquad2 15410. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝑀) & ⊢ (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem2 15409* | Lemma for lgsquad2 15410. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2 15410 | Extend lgsquad 15407 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad3 15411 | Extend lgsquad2 15410 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | m1lgs 15412 | The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a1 15413* | Lemma 1 for 2lgslem1a 15415. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a2 15414 | Lemma 2 for 2lgslem1a 15415. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a 15415* | Lemma 1 for 2lgslem1 15418. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1b 15416* | Lemma 2 for 2lgslem1 15418. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (𝐴...𝐵) & ⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) ⇒ ⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1c 15417 | Lemma 3 for 2lgslem1 15418. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1 15418* | Lemma 1 for 2lgs 15431. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem2 15419 | Lemma 2 for 2lgs 15431. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a 15420 | Lemma for 2lgslem3a1 15424. (Contributed by AV, 14-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b 15421 | Lemma for 2lgslem3b1 15425. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c 15422 | Lemma for 2lgslem3c1 15426. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d 15423 | Lemma for 2lgslem3d1 15427. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a1 15424 | Lemma 1 for 2lgslem3 15428. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b1 15425 | Lemma 2 for 2lgslem3 15428. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c1 15426 | Lemma 3 for 2lgslem3 15428. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d1 15427 | Lemma 4 for 2lgslem3 15428. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3 15428 | Lemma 3 for 2lgs 15431. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs2 15429 | The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 /L 2) = 0 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem4 15430 | Lemma 4 for 2lgs 15431: special case of 2lgs 15431 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs 15431 | The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15344) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem1 15432 | Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem2 15433 | Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3a 15434 | Lemma 1 for 2lgsoddprmlem3 15438. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((1↑2) − 1) / 8) = 0 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3b 15435 | Lemma 2 for 2lgsoddprmlem3 15438. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((3↑2) − 1) / 8) = 1 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3c 15436 | Lemma 3 for 2lgsoddprmlem3 15438. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((5↑2) − 1) / 8) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3d 15437 | Lemma 4 for 2lgsoddprmlem3 15438. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((7↑2) − 1) / 8) = (2 · 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3 15438 | Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem4 15439 | Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprm 15440 | The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem1 15441* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem2 15442* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | mul2sq 15443 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem3 15444 | Lemma for 2sqlem5 15446. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) & ⊢ (𝜑 → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem4 15445 | Lemma for 2sqlem5 15446. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem5 15446 | Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) & ⊢ (𝜑 → 𝑃 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem6 15447* | Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐵 → 𝑝 ∈ 𝑆)) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem7 15448* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8a 15449* | Lemma for 2sqlem8 15450. (Contributed by Mario Carneiro, 4-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8 15450* | Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) & ⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem9 15451* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem10 15452* | Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||||||||||||||
| Theorem | conventions 15453 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-or 15454 | Example for ax-io 710. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 3 ∨ 4 = 4) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-an 15455 | Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 2 ∧ 3 = 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 1kp2ke3k 15456 |
Example for df-dec 9477, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9477 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (;;;1000 + ;;;2000) = ;;;3000 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fl 15457 | Example for df-fl 10379. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-ceil 15458 | Example for df-ceil 10380. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-exp 15459 | Example for df-exp 10650. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fac 15460 | Example for df-fac 10837. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (!‘5) = ;;120 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-bc 15461 | Example for df-bc 10859. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (5C3) = ;10 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-dvds 15462 | Example for df-dvds 11972: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 3 ∥ 6 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-gcd 15463 | Example for df-gcd 12148. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (-6 gcd 9) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | mathbox 15464 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnsn 15465 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnor 15466 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnim 15467 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnan 15468 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnclavius 15469 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-imnimnn 15470 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 15469 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||||||||||||||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 15472 or bj-stfal 15474 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trst 15471 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sttru 15472 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fast 15473 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stfal 15474 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnst 15475 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 15722 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ STAB 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbist 15476 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 15489). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stst 15477 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stim 15478 | A conjunction with a stable consequent is stable. See stabnot 834 for negation , bj-stan 15479 for conjunction , and bj-stal 15481 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stan 15479 | The conjunction of two stable formulas is stable. See bj-stim 15478 for implication, stabnot 834 for negation, and bj-stal 15481 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stand 15480 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 15479. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 15479 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stal 15481 | The universal quantification of a stable formula is stable. See bj-stim 15478 for implication, stabnot 834 for negation, and bj-stan 15479 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-pm2.18st 15482 | Clavius law for stable formulas. See pm2.18dc 856. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-con1st 15483 | Contraposition when the antecedent is a negated stable proposition. See con1dc 857. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trdc 15484 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dctru 15485 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fadc 15486 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcfal 15487 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcstab 15488 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbidc 15489 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 15476. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nndcALT 15490 | Alternate proof of nndc 852. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ DECID 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcdc 15491 | Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stdc 15492 | Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcst 15493 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-ex 15494* | Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1612 and 19.9ht 1655 or 19.23ht 1511). (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∃𝑥𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-hbalt 15495 | Closed form of hbal 1491 (copied from set.mm). (Contributed by BJ, 2-May-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nfalt 15496 | Closed form of nfal 1590 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | spimd 15497 | Deduction form of spim 1752. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2spim 15498* | Double substitution, as in spim 1752. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑧𝜒 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑧∀𝑥𝜓 → 𝜒) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2var 15499* | Implicit substitution of 𝑦 for 𝑥 and 𝑡 for 𝑧 into a theorem. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2varv 15500* | Version of ch2var 15499 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |