ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf GIF version

Theorem iseqf1olemqf 10578
Description: Lemma for seq3f1o 10591. Domain and codomain of 𝑄. (Contributed by Jim Kingdon, 26-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqf (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁   𝜑,𝑢
Allowed substitution hint:   𝑄(𝑢)

Proof of Theorem iseqf1olemqf
StepHypRef Expression
1 iseqf1olemqf.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
21adantr 276 . . 3 ((𝜑𝑢 ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqf.j . . . 4 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43adantr 276 . . 3 ((𝜑𝑢 ∈ (𝑀...𝑁)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 simpr 110 . . 3 ((𝜑𝑢 ∈ (𝑀...𝑁)) → 𝑢 ∈ (𝑀...𝑁))
62, 4, 5iseqf1olemqcl 10573 . 2 ((𝜑𝑢 ∈ (𝑀...𝑁)) → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) ∈ (𝑀...𝑁))
7 iseqf1olemqf.q . 2 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
86, 7fmptd 5713 1 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  ifcif 3558  cmpt 4091  ccnv 4659  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  1c1 7875  cmin 8192  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  iseqf1olemqf1o  10580  iseqf1olemqpcl  10583  seq3f1olemqsum  10587
  Copyright terms: Public domain W3C validator