ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemf GIF version

Theorem caucvgsrlemf 7713
Description: Lemma for caucvgsr 7723. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlemf (𝜑𝐺:NP)
Distinct variable groups:   𝑚,𝐹   𝑦,𝐹   𝑥,𝑚   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐹(𝑥,𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemf
StepHypRef Expression
1 caucvgsr.f . . 3 (𝜑𝐹:NR)
2 caucvgsrlemgt1.gt1 . . 3 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
31, 2caucvgsrlemcl 7710 . 2 ((𝜑𝑥N) → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
4 caucvgsrlemf.xfr . 2 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
53, 4fmptd 5622 1 (𝜑𝐺:NP)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  {cab 2143  wral 2435  cop 3563   class class class wbr 3966  cmpt 4026  wf 5167  cfv 5171  crio 5780  (class class class)co 5825  1oc1o 6357  [cec 6479  Ncnpi 7193   <N clti 7196   ~Q ceq 7200  *Qcrq 7205   <Q cltq 7206  Pcnp 7212  1Pc1p 7213   +P cpp 7214   ~R cer 7217  Rcnr 7218  1Rc1r 7220   +R cplr 7222   <R cltr 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-eprel 4250  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-1o 6364  df-2o 6365  df-oadd 6368  df-omul 6369  df-er 6481  df-ec 6483  df-qs 6487  df-ni 7225  df-pli 7226  df-mi 7227  df-lti 7228  df-plpq 7265  df-mpq 7266  df-enq 7268  df-nqqs 7269  df-plqqs 7270  df-mqqs 7271  df-1nqqs 7272  df-rq 7273  df-ltnqqs 7274  df-enq0 7345  df-nq0 7346  df-0nq0 7347  df-plq0 7348  df-mq0 7349  df-inp 7387  df-i1p 7388  df-iplp 7389  df-iltp 7391  df-enr 7647  df-nr 7648  df-ltr 7651  df-0r 7652  df-1r 7653
This theorem is referenced by:  caucvgsrlemcau  7714  caucvgsrlembound  7715  caucvgsrlemgt1  7716
  Copyright terms: Public domain W3C validator