| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemf | GIF version | ||
| Description: Lemma for caucvgsr 7985. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
| caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) |
| Ref | Expression |
|---|---|
| caucvgsrlemf | ⊢ (𝜑 → 𝐺:N⟶P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . . 3 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | caucvgsrlemgt1.gt1 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
| 3 | 1, 2 | caucvgsrlemcl 7972 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
| 4 | caucvgsrlemf.xfr | . 2 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) | |
| 5 | 3, 4 | fmptd 5788 | 1 ⊢ (𝜑 → 𝐺:N⟶P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 {cab 2215 ∀wral 2508 〈cop 3669 class class class wbr 4082 ↦ cmpt 4144 ⟶wf 5313 ‘cfv 5317 ℩crio 5952 (class class class)co 6000 1oc1o 6553 [cec 6676 Ncnpi 7455 <N clti 7458 ~Q ceq 7462 *Qcrq 7467 <Q cltq 7468 Pcnp 7474 1Pc1p 7475 +P cpp 7476 ~R cer 7479 Rcnr 7480 1Rc1r 7482 +R cplr 7484 <R cltr 7486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-iltp 7653 df-enr 7909 df-nr 7910 df-ltr 7913 df-0r 7914 df-1r 7915 |
| This theorem is referenced by: caucvgsrlemcau 7976 caucvgsrlembound 7977 caucvgsrlemgt1 7978 |
| Copyright terms: Public domain | W3C validator |