![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemf | GIF version |
Description: Lemma for caucvgsr 7804. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )) |
Ref | Expression |
---|---|
caucvgsrlemf | ⊢ (𝜑 → 𝐺:N⟶P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . . 3 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | caucvgsrlemgt1.gt1 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
3 | 1, 2 | caucvgsrlemcl 7791 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P) |
4 | caucvgsrlemf.xfr | . 2 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )) | |
5 | 3, 4 | fmptd 5673 | 1 ⊢ (𝜑 → 𝐺:N⟶P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 {cab 2163 ∀wral 2455 ⟨cop 3597 class class class wbr 4005 ↦ cmpt 4066 ⟶wf 5214 ‘cfv 5218 ℩crio 5833 (class class class)co 5878 1oc1o 6413 [cec 6536 Ncnpi 7274 <N clti 7277 ~Q ceq 7281 *Qcrq 7286 <Q cltq 7287 Pcnp 7293 1Pc1p 7294 +P cpp 7295 ~R cer 7298 Rcnr 7299 1Rc1r 7301 +R cplr 7303 <R cltr 7305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-2o 6421 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-enq0 7426 df-nq0 7427 df-0nq0 7428 df-plq0 7429 df-mq0 7430 df-inp 7468 df-i1p 7469 df-iplp 7470 df-iltp 7472 df-enr 7728 df-nr 7729 df-ltr 7732 df-0r 7733 df-1r 7734 |
This theorem is referenced by: caucvgsrlemcau 7795 caucvgsrlembound 7796 caucvgsrlemgt1 7797 |
Copyright terms: Public domain | W3C validator |