![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fz1n | GIF version |
Description: A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fz1n | ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 8686 | . . 3 ⊢ 1 ∈ ℤ | |
2 | nn0z 8680 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | fzn 9365 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅)) | |
4 | 1, 2, 3 | sylancr 405 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (1...𝑁) = ∅)) |
5 | nn0lt10b 8737 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
6 | 4, 5 | bitr3d 188 | 1 ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1287 ∈ wcel 1436 ∅c0 3272 class class class wbr 3814 (class class class)co 5594 0cc0 7271 1c1 7272 < clt 7443 ℕ0cn0 8583 ℤcz 8660 ...cfz 9333 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-addcom 7366 ax-addass 7368 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-0id 7374 ax-rnegex 7375 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-apti 7381 ax-pre-ltadd 7382 |
This theorem depends on definitions: df-bi 115 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rab 2364 df-v 2616 df-sbc 2829 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-nul 3273 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-br 3815 df-opab 3869 df-mpt 3870 df-id 4087 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-inn 8335 df-n0 8584 df-z 8661 df-uz 8929 df-fz 9334 |
This theorem is referenced by: 0fz1 9368 |
Copyright terms: Public domain | W3C validator |