| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9020 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9366 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7899 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-z 9346 |
| This theorem is referenced by: 1zzd 9372 znnnlt1 9393 nn0n0n1ge2b 9424 nn0lt2 9426 nn0le2is012 9427 3halfnz 9442 prime 9444 nnuz 9656 eluz2nn 9659 eluzge3nn 9665 1eluzge0 9667 2eluzge1 9669 eluz2b1 9694 uz2m1nn 9698 elnn1uz2 9700 elnndc 9705 nn01to3 9710 nnrecq 9738 fz1n 10138 fz10 10140 fz01en 10147 fzpreddisj 10165 fznatpl1 10170 fzprval 10176 fztpval 10177 fseq1p1m1 10188 elfzp1b 10191 elfzm1b 10192 4fvwrd4 10234 ige2m2fzo 10293 fzo12sn 10312 fzofzp1 10322 fzostep1 10332 rebtwn2zlemstep 10361 qbtwnxr 10366 flqge1nn 10403 fldiv4p1lem1div2 10414 fldiv4lem1div2 10416 modqfrac 10448 modqid0 10461 q1mod 10467 mulp1mod1 10476 m1modnnsub1 10481 modqm1p1mod0 10486 modqltm1p1mod 10487 frecfzennn 10537 frecfzen2 10538 zexpcl 10665 qexpcl 10666 qexpclz 10671 m1expcl 10673 expp1zap 10699 expm1ap 10700 bcn1 10869 bcpasc 10877 bcnm1 10883 isfinite4im 10903 hashsng 10909 hashfz 10932 climuni 11477 sum0 11572 sumsnf 11593 expcnv 11688 cvgratz 11716 prod0 11769 prodsnf 11776 sinltxirr 11945 sin01gt0 11946 p1modz1 11978 iddvds 11988 1dvds 11989 dvds1 12037 3dvds 12048 nn0o1gt2 12089 n2dvds1 12096 bitsp1o 12137 bitsfzo 12139 gcdadd 12179 gcdid 12180 gcd1 12181 1gcd 12186 bezoutlema 12193 bezoutlemb 12194 gcdmultiple 12214 lcmgcdlem 12272 lcm1 12276 3lcm2e6woprm 12281 isprm3 12313 prmgt1 12327 phicl2 12409 phibnd 12412 phi1 12414 dfphi2 12415 phimullem 12420 eulerthlemrprm 12424 eulerthlema 12425 eulerthlemth 12427 fermltl 12429 prmdiv 12430 prmdiveq 12431 odzcllem 12438 odzdvds 12441 oddprm 12455 pythagtriplem4 12464 pcpre1 12488 pc1 12501 pcrec 12504 pcmpt 12539 fldivp1 12544 expnprm 12549 pockthlem 12552 igz 12570 4sqlem12 12598 4sqlem13m 12599 4sqlem19 12605 ssnnctlemct 12690 mulgm1 13350 mulgp1 13363 mulgneg2 13364 zsubrg 14215 gzsubrg 14216 zringmulg 14232 mulgrhm2 14244 sin2pim 15157 cos2pim 15158 rpcxp1 15243 logbleb 15305 logblt 15306 lgslem2 15350 lgsfcl2 15355 lgsval2lem 15359 lgsmod 15375 lgsdir2lem1 15377 lgsdir2lem5 15381 lgsdir 15384 lgsne0 15387 1lgs 15392 lgsdinn0 15397 gausslemma2dlem0i 15406 gausslemma2d 15418 lgseisen 15423 lgsquad2lem2 15431 m1lgs 15434 2lgs 15453 2sqlem9 15473 2sqlem10 15474 ex-fl 15479 apdiff 15805 iswomni0 15808 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |