![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1z | GIF version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z | ⊢ 1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8531 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnzi 8869 | 1 ⊢ 1 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1445 1c1 7448 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-z 8849 |
This theorem is referenced by: 1zzd 8875 znnnlt1 8896 nn0n0n1ge2b 8924 nn0lt2 8926 nn0le2is012 8927 3halfnz 8942 prime 8944 nnuz 9153 eluz2nn 9156 eluzge3nn 9159 1eluzge0 9161 2eluzge1 9163 eluz2b1 9187 uz2m1nn 9191 elnn1uz2 9193 nn01to3 9201 nnrecq 9229 fz1n 9607 fz10 9609 fz01en 9616 fzpreddisj 9634 fznatpl1 9639 fzprval 9645 fztpval 9646 fseq1p1m1 9657 elfzp1b 9660 elfzm1b 9661 4fvwrd4 9700 ige2m2fzo 9758 fzo12sn 9777 fzofzp1 9787 fzostep1 9797 rebtwn2zlemstep 9813 qbtwnxr 9818 flqge1nn 9850 fldiv4p1lem1div2 9861 modqfrac 9893 modqid0 9906 q1mod 9912 mulp1mod1 9921 m1modnnsub1 9926 modqm1p1mod0 9931 modqltm1p1mod 9932 frecfzennn 9982 frecfzen2 9983 zexpcl 10101 qexpcl 10102 qexpclz 10107 m1expcl 10109 expp1zap 10135 expm1ap 10136 bcn1 10297 bcpasc 10305 bcnm1 10311 isfinite4im 10332 hashsng 10337 hashfz 10360 climuni 10852 sum0 10947 sumsnf 10968 expcnv 11063 cvgratz 11091 sin01gt0 11217 iddvds 11252 1dvds 11253 dvds1 11297 nn0o1gt2 11348 n2dvds1 11355 gcdadd 11419 gcdid 11420 gcd1 11421 1gcd 11426 bezoutlema 11431 bezoutlemb 11432 gcdmultiple 11452 lcmgcdlem 11502 lcm1 11506 3lcm2e6woprm 11511 isprm3 11543 prmgt1 11556 phicl2 11633 phibnd 11636 phi1 11638 dfphi2 11639 phimullem 11644 ex-fl 12376 |
Copyright terms: Public domain | W3C validator |