![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1z | GIF version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z | ⊢ 1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8993 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnzi 9338 | 1 ⊢ 1 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 1c1 7873 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 |
This theorem is referenced by: 1zzd 9344 znnnlt1 9365 nn0n0n1ge2b 9396 nn0lt2 9398 nn0le2is012 9399 3halfnz 9414 prime 9416 nnuz 9628 eluz2nn 9631 eluzge3nn 9637 1eluzge0 9639 2eluzge1 9641 eluz2b1 9666 uz2m1nn 9670 elnn1uz2 9672 elnndc 9677 nn01to3 9682 nnrecq 9710 fz1n 10110 fz10 10112 fz01en 10119 fzpreddisj 10137 fznatpl1 10142 fzprval 10148 fztpval 10149 fseq1p1m1 10160 elfzp1b 10163 elfzm1b 10164 4fvwrd4 10206 ige2m2fzo 10265 fzo12sn 10284 fzofzp1 10294 fzostep1 10304 rebtwn2zlemstep 10321 qbtwnxr 10326 flqge1nn 10363 fldiv4p1lem1div2 10374 fldiv4lem1div2 10376 modqfrac 10408 modqid0 10421 q1mod 10427 mulp1mod1 10436 m1modnnsub1 10441 modqm1p1mod0 10446 modqltm1p1mod 10447 frecfzennn 10497 frecfzen2 10498 zexpcl 10625 qexpcl 10626 qexpclz 10631 m1expcl 10633 expp1zap 10659 expm1ap 10660 bcn1 10829 bcpasc 10837 bcnm1 10843 isfinite4im 10863 hashsng 10869 hashfz 10892 climuni 11436 sum0 11531 sumsnf 11552 expcnv 11647 cvgratz 11675 prod0 11728 prodsnf 11735 sinltxirr 11904 sin01gt0 11905 p1modz1 11937 iddvds 11947 1dvds 11948 dvds1 11995 nn0o1gt2 12046 n2dvds1 12053 gcdadd 12122 gcdid 12123 gcd1 12124 1gcd 12129 bezoutlema 12136 bezoutlemb 12137 gcdmultiple 12157 lcmgcdlem 12215 lcm1 12219 3lcm2e6woprm 12224 isprm3 12256 prmgt1 12270 phicl2 12352 phibnd 12355 phi1 12357 dfphi2 12358 phimullem 12363 eulerthlemrprm 12367 eulerthlema 12368 eulerthlemth 12370 fermltl 12372 prmdiv 12373 prmdiveq 12374 odzcllem 12380 odzdvds 12383 oddprm 12397 pythagtriplem4 12406 pcpre1 12430 pc1 12443 pcrec 12446 pcmpt 12481 fldivp1 12486 expnprm 12491 pockthlem 12494 igz 12512 4sqlem12 12540 4sqlem13m 12541 4sqlem19 12547 ssnnctlemct 12603 mulgm1 13212 mulgp1 13225 mulgneg2 13226 zsubrg 14069 gzsubrg 14070 zringmulg 14086 mulgrhm2 14098 sin2pim 14948 cos2pim 14949 rpcxp1 15034 logbleb 15093 logblt 15094 lgslem2 15117 lgsfcl2 15122 lgsval2lem 15126 lgsmod 15142 lgsdir2lem1 15144 lgsdir2lem5 15148 lgsdir 15151 lgsne0 15154 1lgs 15159 lgsdinn0 15164 gausslemma2dlem0i 15173 gausslemma2d 15185 lgseisen 15190 m1lgs 15192 2sqlem9 15211 2sqlem10 15212 ex-fl 15217 apdiff 15538 iswomni0 15541 nconstwlpolem0 15553 |
Copyright terms: Public domain | W3C validator |