| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9109 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9455 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 1c1 7988 ℤcz 9434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-z 9435 |
| This theorem is referenced by: 1zzd 9461 znnnlt1 9482 nn0n0n1ge2b 9514 nn0lt2 9516 nn0le2is012 9517 3halfnz 9532 prime 9534 nnuz 9746 eluz2nn 9749 eluzge3nn 9755 1eluzge0 9757 2eluzge1 9759 eluz2b1 9784 uz2m1nn 9788 elnn1uz2 9790 elnndc 9795 nn01to3 9800 nnrecq 9828 fz1n 10228 fz10 10230 fz01en 10237 fzpreddisj 10255 fznatpl1 10260 fzprval 10266 fztpval 10267 fseq1p1m1 10278 elfzp1b 10281 elfzm1b 10282 4fvwrd4 10324 ige2m2fzo 10391 fzo12sn 10410 fzofzp1 10420 fzostep1 10430 rebtwn2zlemstep 10459 qbtwnxr 10464 flqge1nn 10501 fldiv4p1lem1div2 10512 fldiv4lem1div2 10514 modqfrac 10546 modqid0 10559 q1mod 10565 mulp1mod1 10574 m1modnnsub1 10579 modqm1p1mod0 10584 modqltm1p1mod 10585 frecfzennn 10635 frecfzen2 10636 zexpcl 10763 qexpcl 10764 qexpclz 10769 m1expcl 10771 expp1zap 10797 expm1ap 10798 bcn1 10967 bcpasc 10975 bcnm1 10981 isfinite4im 11001 hashsng 11007 hashfz 11030 climuni 11790 sum0 11885 sumsnf 11906 expcnv 12001 cvgratz 12029 prod0 12082 prodsnf 12089 sinltxirr 12258 sin01gt0 12259 p1modz1 12291 iddvds 12301 1dvds 12302 dvds1 12350 3dvds 12361 nn0o1gt2 12402 n2dvds1 12409 bitsp1o 12450 bitsfzo 12452 gcdadd 12492 gcdid 12493 gcd1 12494 1gcd 12499 bezoutlema 12506 bezoutlemb 12507 gcdmultiple 12527 lcmgcdlem 12585 lcm1 12589 3lcm2e6woprm 12594 isprm3 12626 prmgt1 12640 phicl2 12722 phibnd 12725 phi1 12727 dfphi2 12728 phimullem 12733 eulerthlemrprm 12737 eulerthlema 12738 eulerthlemth 12740 fermltl 12742 prmdiv 12743 prmdiveq 12744 odzcllem 12751 odzdvds 12754 oddprm 12768 pythagtriplem4 12777 pcpre1 12801 pc1 12814 pcrec 12817 pcmpt 12852 fldivp1 12857 expnprm 12862 pockthlem 12865 igz 12883 4sqlem12 12911 4sqlem13m 12912 4sqlem19 12918 ssnnctlemct 13003 mulgm1 13665 mulgp1 13678 mulgneg2 13679 zsubrg 14530 gzsubrg 14531 zringmulg 14547 mulgrhm2 14559 sin2pim 15472 cos2pim 15473 rpcxp1 15558 logbleb 15620 logblt 15621 lgslem2 15665 lgsfcl2 15670 lgsval2lem 15674 lgsmod 15690 lgsdir2lem1 15692 lgsdir2lem5 15696 lgsdir 15699 lgsne0 15702 1lgs 15707 lgsdinn0 15712 gausslemma2dlem0i 15721 gausslemma2d 15733 lgseisen 15738 lgsquad2lem2 15746 m1lgs 15749 2lgs 15768 2sqlem9 15788 2sqlem10 15789 ex-fl 16019 apdiff 16347 iswomni0 16350 nconstwlpolem0 16362 |
| Copyright terms: Public domain | W3C validator |