| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9001 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9347 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7880 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 |
| This theorem is referenced by: 1zzd 9353 znnnlt1 9374 nn0n0n1ge2b 9405 nn0lt2 9407 nn0le2is012 9408 3halfnz 9423 prime 9425 nnuz 9637 eluz2nn 9640 eluzge3nn 9646 1eluzge0 9648 2eluzge1 9650 eluz2b1 9675 uz2m1nn 9679 elnn1uz2 9681 elnndc 9686 nn01to3 9691 nnrecq 9719 fz1n 10119 fz10 10121 fz01en 10128 fzpreddisj 10146 fznatpl1 10151 fzprval 10157 fztpval 10158 fseq1p1m1 10169 elfzp1b 10172 elfzm1b 10173 4fvwrd4 10215 ige2m2fzo 10274 fzo12sn 10293 fzofzp1 10303 fzostep1 10313 rebtwn2zlemstep 10342 qbtwnxr 10347 flqge1nn 10384 fldiv4p1lem1div2 10395 fldiv4lem1div2 10397 modqfrac 10429 modqid0 10442 q1mod 10448 mulp1mod1 10457 m1modnnsub1 10462 modqm1p1mod0 10467 modqltm1p1mod 10468 frecfzennn 10518 frecfzen2 10519 zexpcl 10646 qexpcl 10647 qexpclz 10652 m1expcl 10654 expp1zap 10680 expm1ap 10681 bcn1 10850 bcpasc 10858 bcnm1 10864 isfinite4im 10884 hashsng 10890 hashfz 10913 climuni 11458 sum0 11553 sumsnf 11574 expcnv 11669 cvgratz 11697 prod0 11750 prodsnf 11757 sinltxirr 11926 sin01gt0 11927 p1modz1 11959 iddvds 11969 1dvds 11970 dvds1 12018 3dvds 12029 nn0o1gt2 12070 n2dvds1 12077 bitsp1o 12117 bitsfzo 12119 gcdadd 12152 gcdid 12153 gcd1 12154 1gcd 12159 bezoutlema 12166 bezoutlemb 12167 gcdmultiple 12187 lcmgcdlem 12245 lcm1 12249 3lcm2e6woprm 12254 isprm3 12286 prmgt1 12300 phicl2 12382 phibnd 12385 phi1 12387 dfphi2 12388 phimullem 12393 eulerthlemrprm 12397 eulerthlema 12398 eulerthlemth 12400 fermltl 12402 prmdiv 12403 prmdiveq 12404 odzcllem 12411 odzdvds 12414 oddprm 12428 pythagtriplem4 12437 pcpre1 12461 pc1 12474 pcrec 12477 pcmpt 12512 fldivp1 12517 expnprm 12522 pockthlem 12525 igz 12543 4sqlem12 12571 4sqlem13m 12572 4sqlem19 12578 ssnnctlemct 12663 mulgm1 13272 mulgp1 13285 mulgneg2 13286 zsubrg 14137 gzsubrg 14138 zringmulg 14154 mulgrhm2 14166 sin2pim 15049 cos2pim 15050 rpcxp1 15135 logbleb 15197 logblt 15198 lgslem2 15242 lgsfcl2 15247 lgsval2lem 15251 lgsmod 15267 lgsdir2lem1 15269 lgsdir2lem5 15273 lgsdir 15276 lgsne0 15279 1lgs 15284 lgsdinn0 15289 gausslemma2dlem0i 15298 gausslemma2d 15310 lgseisen 15315 lgsquad2lem2 15323 m1lgs 15326 2lgs 15345 2sqlem9 15365 2sqlem10 15366 ex-fl 15371 apdiff 15692 iswomni0 15695 nconstwlpolem0 15707 |
| Copyright terms: Public domain | W3C validator |