| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9018 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9364 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7897 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 |
| This theorem is referenced by: 1zzd 9370 znnnlt1 9391 nn0n0n1ge2b 9422 nn0lt2 9424 nn0le2is012 9425 3halfnz 9440 prime 9442 nnuz 9654 eluz2nn 9657 eluzge3nn 9663 1eluzge0 9665 2eluzge1 9667 eluz2b1 9692 uz2m1nn 9696 elnn1uz2 9698 elnndc 9703 nn01to3 9708 nnrecq 9736 fz1n 10136 fz10 10138 fz01en 10145 fzpreddisj 10163 fznatpl1 10168 fzprval 10174 fztpval 10175 fseq1p1m1 10186 elfzp1b 10189 elfzm1b 10190 4fvwrd4 10232 ige2m2fzo 10291 fzo12sn 10310 fzofzp1 10320 fzostep1 10330 rebtwn2zlemstep 10359 qbtwnxr 10364 flqge1nn 10401 fldiv4p1lem1div2 10412 fldiv4lem1div2 10414 modqfrac 10446 modqid0 10459 q1mod 10465 mulp1mod1 10474 m1modnnsub1 10479 modqm1p1mod0 10484 modqltm1p1mod 10485 frecfzennn 10535 frecfzen2 10536 zexpcl 10663 qexpcl 10664 qexpclz 10669 m1expcl 10671 expp1zap 10697 expm1ap 10698 bcn1 10867 bcpasc 10875 bcnm1 10881 isfinite4im 10901 hashsng 10907 hashfz 10930 climuni 11475 sum0 11570 sumsnf 11591 expcnv 11686 cvgratz 11714 prod0 11767 prodsnf 11774 sinltxirr 11943 sin01gt0 11944 p1modz1 11976 iddvds 11986 1dvds 11987 dvds1 12035 3dvds 12046 nn0o1gt2 12087 n2dvds1 12094 bitsp1o 12135 bitsfzo 12137 gcdadd 12177 gcdid 12178 gcd1 12179 1gcd 12184 bezoutlema 12191 bezoutlemb 12192 gcdmultiple 12212 lcmgcdlem 12270 lcm1 12274 3lcm2e6woprm 12279 isprm3 12311 prmgt1 12325 phicl2 12407 phibnd 12410 phi1 12412 dfphi2 12413 phimullem 12418 eulerthlemrprm 12422 eulerthlema 12423 eulerthlemth 12425 fermltl 12427 prmdiv 12428 prmdiveq 12429 odzcllem 12436 odzdvds 12439 oddprm 12453 pythagtriplem4 12462 pcpre1 12486 pc1 12499 pcrec 12502 pcmpt 12537 fldivp1 12542 expnprm 12547 pockthlem 12550 igz 12568 4sqlem12 12596 4sqlem13m 12597 4sqlem19 12603 ssnnctlemct 12688 mulgm1 13348 mulgp1 13361 mulgneg2 13362 zsubrg 14213 gzsubrg 14214 zringmulg 14230 mulgrhm2 14242 sin2pim 15133 cos2pim 15134 rpcxp1 15219 logbleb 15281 logblt 15282 lgslem2 15326 lgsfcl2 15331 lgsval2lem 15335 lgsmod 15351 lgsdir2lem1 15353 lgsdir2lem5 15357 lgsdir 15360 lgsne0 15363 1lgs 15368 lgsdinn0 15373 gausslemma2dlem0i 15382 gausslemma2d 15394 lgseisen 15399 lgsquad2lem2 15407 m1lgs 15410 2lgs 15429 2sqlem9 15449 2sqlem10 15450 ex-fl 15455 apdiff 15779 iswomni0 15782 nconstwlpolem0 15794 |
| Copyright terms: Public domain | W3C validator |