Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1z | GIF version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z | ⊢ 1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8876 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnzi 9220 | 1 ⊢ 1 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 1c1 7762 ℤcz 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-z 9200 |
This theorem is referenced by: 1zzd 9226 znnnlt1 9247 nn0n0n1ge2b 9278 nn0lt2 9280 nn0le2is012 9281 3halfnz 9296 prime 9298 nnuz 9509 eluz2nn 9512 eluzge3nn 9518 1eluzge0 9520 2eluzge1 9522 eluz2b1 9547 uz2m1nn 9551 elnn1uz2 9553 elnndc 9558 nn01to3 9563 nnrecq 9591 fz1n 9987 fz10 9989 fz01en 9996 fzpreddisj 10014 fznatpl1 10019 fzprval 10025 fztpval 10026 fseq1p1m1 10037 elfzp1b 10040 elfzm1b 10041 4fvwrd4 10083 ige2m2fzo 10141 fzo12sn 10160 fzofzp1 10170 fzostep1 10180 rebtwn2zlemstep 10196 qbtwnxr 10201 flqge1nn 10237 fldiv4p1lem1div2 10248 modqfrac 10280 modqid0 10293 q1mod 10299 mulp1mod1 10308 m1modnnsub1 10313 modqm1p1mod0 10318 modqltm1p1mod 10319 frecfzennn 10369 frecfzen2 10370 zexpcl 10478 qexpcl 10479 qexpclz 10484 m1expcl 10486 expp1zap 10512 expm1ap 10513 bcn1 10679 bcpasc 10687 bcnm1 10693 isfinite4im 10714 hashsng 10720 hashfz 10743 climuni 11243 sum0 11338 sumsnf 11359 expcnv 11454 cvgratz 11482 prod0 11535 prodsnf 11542 sin01gt0 11711 p1modz1 11743 iddvds 11753 1dvds 11754 dvds1 11800 nn0o1gt2 11851 n2dvds1 11858 gcdadd 11927 gcdid 11928 gcd1 11929 1gcd 11934 bezoutlema 11941 bezoutlemb 11942 gcdmultiple 11962 lcmgcdlem 12018 lcm1 12022 3lcm2e6woprm 12027 isprm3 12059 prmgt1 12073 phicl2 12155 phibnd 12158 phi1 12160 dfphi2 12161 phimullem 12166 eulerthlemrprm 12170 eulerthlema 12171 eulerthlemth 12173 fermltl 12175 prmdiv 12176 prmdiveq 12177 odzcllem 12183 odzdvds 12186 oddprm 12200 pythagtriplem4 12209 pcpre1 12233 pc1 12246 pcrec 12249 pcmpt 12282 fldivp1 12287 expnprm 12292 pockthlem 12295 igz 12313 ssnnctlemct 12388 sin2pim 13487 cos2pim 13488 rpcxp1 13573 logbleb 13632 logblt 13633 lgslem2 13655 lgsfcl2 13660 lgsval2lem 13664 lgsmod 13680 lgsdir2lem1 13682 lgsdir2lem5 13686 lgsdir 13689 lgsne0 13692 1lgs 13697 lgsdinn0 13702 2sqlem9 13713 2sqlem10 13714 ex-fl 13719 apdiff 14040 iswomni0 14043 nconstwlpolem0 14054 |
Copyright terms: Public domain | W3C validator |