Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1z | GIF version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z | ⊢ 1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8864 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnzi 9208 | 1 ⊢ 1 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 1c1 7750 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-z 9188 |
This theorem is referenced by: 1zzd 9214 znnnlt1 9235 nn0n0n1ge2b 9266 nn0lt2 9268 nn0le2is012 9269 3halfnz 9284 prime 9286 nnuz 9497 eluz2nn 9500 eluzge3nn 9506 1eluzge0 9508 2eluzge1 9510 eluz2b1 9535 uz2m1nn 9539 elnn1uz2 9541 elnndc 9546 nn01to3 9551 nnrecq 9579 fz1n 9975 fz10 9977 fz01en 9984 fzpreddisj 10002 fznatpl1 10007 fzprval 10013 fztpval 10014 fseq1p1m1 10025 elfzp1b 10028 elfzm1b 10029 4fvwrd4 10071 ige2m2fzo 10129 fzo12sn 10148 fzofzp1 10158 fzostep1 10168 rebtwn2zlemstep 10184 qbtwnxr 10189 flqge1nn 10225 fldiv4p1lem1div2 10236 modqfrac 10268 modqid0 10281 q1mod 10287 mulp1mod1 10296 m1modnnsub1 10301 modqm1p1mod0 10306 modqltm1p1mod 10307 frecfzennn 10357 frecfzen2 10358 zexpcl 10466 qexpcl 10467 qexpclz 10472 m1expcl 10474 expp1zap 10500 expm1ap 10501 bcn1 10667 bcpasc 10675 bcnm1 10681 isfinite4im 10702 hashsng 10707 hashfz 10730 climuni 11230 sum0 11325 sumsnf 11346 expcnv 11441 cvgratz 11469 prod0 11522 prodsnf 11529 sin01gt0 11698 p1modz1 11730 iddvds 11740 1dvds 11741 dvds1 11787 nn0o1gt2 11838 n2dvds1 11845 gcdadd 11914 gcdid 11915 gcd1 11916 1gcd 11921 bezoutlema 11928 bezoutlemb 11929 gcdmultiple 11949 lcmgcdlem 12005 lcm1 12009 3lcm2e6woprm 12014 isprm3 12046 prmgt1 12060 phicl2 12142 phibnd 12145 phi1 12147 dfphi2 12148 phimullem 12153 eulerthlemrprm 12157 eulerthlema 12158 eulerthlemth 12160 fermltl 12162 prmdiv 12163 prmdiveq 12164 odzcllem 12170 odzdvds 12173 oddprm 12187 pythagtriplem4 12196 pcpre1 12220 pc1 12233 pcrec 12236 pcmpt 12269 fldivp1 12274 expnprm 12279 pockthlem 12282 igz 12300 ssnnctlemct 12375 sin2pim 13334 cos2pim 13335 rpcxp1 13420 logbleb 13479 logblt 13480 lgslem2 13502 lgsfcl2 13507 lgsval2lem 13511 lgsmod 13527 lgsdir2lem1 13529 lgsdir2lem5 13533 lgsdir 13536 lgsne0 13539 1lgs 13544 lgsdinn0 13549 2sqlem9 13560 2sqlem10 13561 ex-fl 13566 apdiff 13887 iswomni0 13890 nconstwlpolem0 13901 |
Copyright terms: Public domain | W3C validator |