| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9060 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9406 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 1c1 7939 ℤcz 9385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-z 9386 |
| This theorem is referenced by: 1zzd 9412 znnnlt1 9433 nn0n0n1ge2b 9465 nn0lt2 9467 nn0le2is012 9468 3halfnz 9483 prime 9485 nnuz 9697 eluz2nn 9700 eluzge3nn 9706 1eluzge0 9708 2eluzge1 9710 eluz2b1 9735 uz2m1nn 9739 elnn1uz2 9741 elnndc 9746 nn01to3 9751 nnrecq 9779 fz1n 10179 fz10 10181 fz01en 10188 fzpreddisj 10206 fznatpl1 10211 fzprval 10217 fztpval 10218 fseq1p1m1 10229 elfzp1b 10232 elfzm1b 10233 4fvwrd4 10275 ige2m2fzo 10340 fzo12sn 10359 fzofzp1 10369 fzostep1 10379 rebtwn2zlemstep 10408 qbtwnxr 10413 flqge1nn 10450 fldiv4p1lem1div2 10461 fldiv4lem1div2 10463 modqfrac 10495 modqid0 10508 q1mod 10514 mulp1mod1 10523 m1modnnsub1 10528 modqm1p1mod0 10533 modqltm1p1mod 10534 frecfzennn 10584 frecfzen2 10585 zexpcl 10712 qexpcl 10713 qexpclz 10718 m1expcl 10720 expp1zap 10746 expm1ap 10747 bcn1 10916 bcpasc 10924 bcnm1 10930 isfinite4im 10950 hashsng 10956 hashfz 10979 climuni 11654 sum0 11749 sumsnf 11770 expcnv 11865 cvgratz 11893 prod0 11946 prodsnf 11953 sinltxirr 12122 sin01gt0 12123 p1modz1 12155 iddvds 12165 1dvds 12166 dvds1 12214 3dvds 12225 nn0o1gt2 12266 n2dvds1 12273 bitsp1o 12314 bitsfzo 12316 gcdadd 12356 gcdid 12357 gcd1 12358 1gcd 12363 bezoutlema 12370 bezoutlemb 12371 gcdmultiple 12391 lcmgcdlem 12449 lcm1 12453 3lcm2e6woprm 12458 isprm3 12490 prmgt1 12504 phicl2 12586 phibnd 12589 phi1 12591 dfphi2 12592 phimullem 12597 eulerthlemrprm 12601 eulerthlema 12602 eulerthlemth 12604 fermltl 12606 prmdiv 12607 prmdiveq 12608 odzcllem 12615 odzdvds 12618 oddprm 12632 pythagtriplem4 12641 pcpre1 12665 pc1 12678 pcrec 12681 pcmpt 12716 fldivp1 12721 expnprm 12726 pockthlem 12729 igz 12747 4sqlem12 12775 4sqlem13m 12776 4sqlem19 12782 ssnnctlemct 12867 mulgm1 13528 mulgp1 13541 mulgneg2 13542 zsubrg 14393 gzsubrg 14394 zringmulg 14410 mulgrhm2 14422 sin2pim 15335 cos2pim 15336 rpcxp1 15421 logbleb 15483 logblt 15484 lgslem2 15528 lgsfcl2 15533 lgsval2lem 15537 lgsmod 15553 lgsdir2lem1 15555 lgsdir2lem5 15559 lgsdir 15562 lgsne0 15565 1lgs 15570 lgsdinn0 15575 gausslemma2dlem0i 15584 gausslemma2d 15596 lgseisen 15601 lgsquad2lem2 15609 m1lgs 15612 2lgs 15631 2sqlem9 15651 2sqlem10 15652 ex-fl 15775 apdiff 16102 iswomni0 16105 nconstwlpolem0 16117 |
| Copyright terms: Public domain | W3C validator |