| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | GIF version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z | ⊢ 1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9129 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnzi 9475 | 1 ⊢ 1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 1c1 8008 ℤcz 9454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-z 9455 |
| This theorem is referenced by: 1zzd 9481 znnnlt1 9502 nn0n0n1ge2b 9534 nn0lt2 9536 nn0le2is012 9537 3halfnz 9552 prime 9554 nnuz 9766 eluz2nn 9769 eluzge3nn 9775 1eluzge0 9777 2eluzge1 9779 eluz2b1 9804 uz2m1nn 9808 elnn1uz2 9810 elnndc 9815 nn01to3 9820 nnrecq 9848 fz1n 10248 fz10 10250 fz01en 10257 fzpreddisj 10275 fznatpl1 10280 fzprval 10286 fztpval 10287 fseq1p1m1 10298 elfzp1b 10301 elfzm1b 10302 4fvwrd4 10344 ige2m2fzo 10412 fzo12sn 10431 fzofzp1 10441 fzostep1 10451 rebtwn2zlemstep 10480 qbtwnxr 10485 flqge1nn 10522 fldiv4p1lem1div2 10533 fldiv4lem1div2 10535 modqfrac 10567 modqid0 10580 q1mod 10586 mulp1mod1 10595 m1modnnsub1 10600 modqm1p1mod0 10605 modqltm1p1mod 10606 frecfzennn 10656 frecfzen2 10657 zexpcl 10784 qexpcl 10785 qexpclz 10790 m1expcl 10792 expp1zap 10818 expm1ap 10819 bcn1 10988 bcpasc 10996 bcnm1 11002 isfinite4im 11022 hashsng 11028 hashfz 11051 climuni 11812 sum0 11907 sumsnf 11928 expcnv 12023 cvgratz 12051 prod0 12104 prodsnf 12111 sinltxirr 12280 sin01gt0 12281 p1modz1 12313 iddvds 12323 1dvds 12324 dvds1 12372 3dvds 12383 nn0o1gt2 12424 n2dvds1 12431 bitsp1o 12472 bitsfzo 12474 gcdadd 12514 gcdid 12515 gcd1 12516 1gcd 12521 bezoutlema 12528 bezoutlemb 12529 gcdmultiple 12549 lcmgcdlem 12607 lcm1 12611 3lcm2e6woprm 12616 isprm3 12648 prmgt1 12662 phicl2 12744 phibnd 12747 phi1 12749 dfphi2 12750 phimullem 12755 eulerthlemrprm 12759 eulerthlema 12760 eulerthlemth 12762 fermltl 12764 prmdiv 12765 prmdiveq 12766 odzcllem 12773 odzdvds 12776 oddprm 12790 pythagtriplem4 12799 pcpre1 12823 pc1 12836 pcrec 12839 pcmpt 12874 fldivp1 12879 expnprm 12884 pockthlem 12887 igz 12905 4sqlem12 12933 4sqlem13m 12934 4sqlem19 12940 ssnnctlemct 13025 mulgm1 13687 mulgp1 13700 mulgneg2 13701 zsubrg 14553 gzsubrg 14554 zringmulg 14570 mulgrhm2 14582 sin2pim 15495 cos2pim 15496 rpcxp1 15581 logbleb 15643 logblt 15644 lgslem2 15688 lgsfcl2 15693 lgsval2lem 15697 lgsmod 15713 lgsdir2lem1 15715 lgsdir2lem5 15719 lgsdir 15722 lgsne0 15725 1lgs 15730 lgsdinn0 15735 gausslemma2dlem0i 15744 gausslemma2d 15756 lgseisen 15761 lgsquad2lem2 15769 m1lgs 15772 2lgs 15791 2sqlem9 15811 2sqlem10 15812 upgr2wlkdc 16096 ex-fl 16113 apdiff 16446 iswomni0 16449 nconstwlpolem0 16461 |
| Copyright terms: Public domain | W3C validator |