Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1z | GIF version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z | ⊢ 1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8889 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnzi 9233 | 1 ⊢ 1 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 1c1 7775 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 |
This theorem is referenced by: 1zzd 9239 znnnlt1 9260 nn0n0n1ge2b 9291 nn0lt2 9293 nn0le2is012 9294 3halfnz 9309 prime 9311 nnuz 9522 eluz2nn 9525 eluzge3nn 9531 1eluzge0 9533 2eluzge1 9535 eluz2b1 9560 uz2m1nn 9564 elnn1uz2 9566 elnndc 9571 nn01to3 9576 nnrecq 9604 fz1n 10000 fz10 10002 fz01en 10009 fzpreddisj 10027 fznatpl1 10032 fzprval 10038 fztpval 10039 fseq1p1m1 10050 elfzp1b 10053 elfzm1b 10054 4fvwrd4 10096 ige2m2fzo 10154 fzo12sn 10173 fzofzp1 10183 fzostep1 10193 rebtwn2zlemstep 10209 qbtwnxr 10214 flqge1nn 10250 fldiv4p1lem1div2 10261 modqfrac 10293 modqid0 10306 q1mod 10312 mulp1mod1 10321 m1modnnsub1 10326 modqm1p1mod0 10331 modqltm1p1mod 10332 frecfzennn 10382 frecfzen2 10383 zexpcl 10491 qexpcl 10492 qexpclz 10497 m1expcl 10499 expp1zap 10525 expm1ap 10526 bcn1 10692 bcpasc 10700 bcnm1 10706 isfinite4im 10727 hashsng 10733 hashfz 10756 climuni 11256 sum0 11351 sumsnf 11372 expcnv 11467 cvgratz 11495 prod0 11548 prodsnf 11555 sin01gt0 11724 p1modz1 11756 iddvds 11766 1dvds 11767 dvds1 11813 nn0o1gt2 11864 n2dvds1 11871 gcdadd 11940 gcdid 11941 gcd1 11942 1gcd 11947 bezoutlema 11954 bezoutlemb 11955 gcdmultiple 11975 lcmgcdlem 12031 lcm1 12035 3lcm2e6woprm 12040 isprm3 12072 prmgt1 12086 phicl2 12168 phibnd 12171 phi1 12173 dfphi2 12174 phimullem 12179 eulerthlemrprm 12183 eulerthlema 12184 eulerthlemth 12186 fermltl 12188 prmdiv 12189 prmdiveq 12190 odzcllem 12196 odzdvds 12199 oddprm 12213 pythagtriplem4 12222 pcpre1 12246 pc1 12259 pcrec 12262 pcmpt 12295 fldivp1 12300 expnprm 12305 pockthlem 12308 igz 12326 ssnnctlemct 12401 sin2pim 13528 cos2pim 13529 rpcxp1 13614 logbleb 13673 logblt 13674 lgslem2 13696 lgsfcl2 13701 lgsval2lem 13705 lgsmod 13721 lgsdir2lem1 13723 lgsdir2lem5 13727 lgsdir 13730 lgsne0 13733 1lgs 13738 lgsdinn0 13743 2sqlem9 13754 2sqlem10 13755 ex-fl 13760 apdiff 14080 iswomni0 14083 nconstwlpolem0 14094 |
Copyright terms: Public domain | W3C validator |