| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnegneg | GIF version | ||
| Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnncl.t | ⊢ · = (.g‘𝐺) |
| mulgneg.i | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnegneg | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnncl.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 3 | mulgneg.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 4 | 1, 2, 3 | mulgneg 13270 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) |
| 5 | 4 | fveq2d 5562 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝐼‘(𝐼‘(𝑁 · 𝑋)))) |
| 6 | simp1 999 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 7 | 1, 2 | mulgcl 13269 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| 8 | 1, 3 | grpinvinv 13199 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑁 · 𝑋))) = (𝑁 · 𝑋)) |
| 9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝐼‘(𝑁 · 𝑋))) = (𝑁 · 𝑋)) |
| 10 | 5, 9 | eqtrd 2229 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 -cneg 8198 ℤcz 9326 Basecbs 12678 Grpcgrp 13132 invgcminusg 13133 .gcmg 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mulg 13250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |