![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodvsubval2 | GIF version |
Description: Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvsubval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsubval2.p | ⊢ + = (+g‘𝑊) |
lmodvsubval2.m | ⊢ − = (-g‘𝑊) |
lmodvsubval2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsubval2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsubval2.n | ⊢ 𝑁 = (invg‘𝐹) |
lmodvsubval2.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
lmodvsubval2 | ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsubval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodvsubval2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
3 | eqid 2189 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
4 | lmodvsubval2.m | . . . 4 ⊢ − = (-g‘𝑊) | |
5 | 1, 2, 3, 4 | grpsubval 13013 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
6 | 5 | 3adant1 1017 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
7 | lmodvsubval2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
8 | lmodvsubval2.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lmodvsubval2.u | . . . . 5 ⊢ 1 = (1r‘𝐹) | |
10 | lmodvsubval2.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐹) | |
11 | 1, 3, 7, 8, 9, 10 | lmodvneg1 13671 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉) → ((𝑁‘ 1 ) · 𝐵) = ((invg‘𝑊)‘𝐵)) |
12 | 11 | 3adant2 1018 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘ 1 ) · 𝐵) = ((invg‘𝑊)‘𝐵)) |
13 | 12 | oveq2d 5916 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + ((𝑁‘ 1 ) · 𝐵)) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
14 | 6, 13 | eqtr4d 2225 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 Basecbs 12523 +gcplusg 12600 Scalarcsca 12603 ·𝑠 cvsca 12604 invgcminusg 12969 -gcsg 12970 1rcur 13338 LModclmod 13628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-plusg 12613 df-mulr 12614 df-sca 12616 df-vsca 12617 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-sbg 12973 df-mgp 13300 df-ur 13339 df-ring 13377 df-lmod 13630 |
This theorem is referenced by: lmodsubvs 13684 lmodsubdi 13685 lmodsubdir 13686 lssvsubcl 13707 |
Copyright terms: Public domain | W3C validator |