| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsubval2 | GIF version | ||
| Description: Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvsubval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsubval2.p | ⊢ + = (+g‘𝑊) |
| lmodvsubval2.m | ⊢ − = (-g‘𝑊) |
| lmodvsubval2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsubval2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsubval2.n | ⊢ 𝑁 = (invg‘𝐹) |
| lmodvsubval2.u | ⊢ 1 = (1r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsubval2 | ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsubval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lmodvsubval2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 3 | eqid 2229 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 4 | lmodvsubval2.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 5 | 1, 2, 3, 4 | grpsubval 13587 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
| 6 | 5 | 3adant1 1039 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
| 7 | lmodvsubval2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lmodvsubval2.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lmodvsubval2.u | . . . . 5 ⊢ 1 = (1r‘𝐹) | |
| 10 | lmodvsubval2.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐹) | |
| 11 | 1, 3, 7, 8, 9, 10 | lmodvneg1 14302 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉) → ((𝑁‘ 1 ) · 𝐵) = ((invg‘𝑊)‘𝐵)) |
| 12 | 11 | 3adant2 1040 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘ 1 ) · 𝐵) = ((invg‘𝑊)‘𝐵)) |
| 13 | 12 | oveq2d 6023 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + ((𝑁‘ 1 ) · 𝐵)) = (𝐴 + ((invg‘𝑊)‘𝐵))) |
| 14 | 6, 13 | eqtr4d 2265 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Scalarcsca 13121 ·𝑠 cvsca 13122 invgcminusg 13542 -gcsg 13543 1rcur 13930 LModclmod 14259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mgp 13892 df-ur 13931 df-ring 13969 df-lmod 14261 |
| This theorem is referenced by: lmodsubvs 14315 lmodsubdi 14316 lmodsubdir 14317 lssvsubcl 14338 |
| Copyright terms: Public domain | W3C validator |