| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplelbascoe | GIF version | ||
| Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
| mplval.z | ⊢ 0 = (0g‘𝑅) |
| mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mplelbascoe | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplval.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | mplval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | mplval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | mplbas.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mplbascoe 14325 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) |
| 7 | 6 | eleq2d 2266 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )})) |
| 8 | fveq1 5560 | . . . . . 6 ⊢ (𝑓 = 𝑋 → (𝑓‘𝑏) = (𝑋‘𝑏)) | |
| 9 | 8 | eqeq1d 2205 | . . . . 5 ⊢ (𝑓 = 𝑋 → ((𝑓‘𝑏) = 0 ↔ (𝑋‘𝑏) = 0 )) |
| 10 | 9 | imbi2d 230 | . . . 4 ⊢ (𝑓 = 𝑋 → ((∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 ) ↔ (∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 ))) |
| 11 | 10 | rexralbidv 2523 | . . 3 ⊢ (𝑓 = 𝑋 → (∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 ) ↔ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 ))) |
| 12 | 11 | elrab 2920 | . 2 ⊢ (𝑋 ∈ {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 ))) |
| 13 | 7, 12 | bitrdi 196 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 )))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {crab 2479 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ↑𝑚 cmap 6716 < clt 8080 ℕ0cn0 9268 Basecbs 12705 0gc0g 12960 mPwSer cmps 14295 mPoly cmpl 14296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-sca 12798 df-vsca 12799 df-tset 12801 df-rest 12945 df-topn 12946 df-topgen 12964 df-pt 12965 df-psr 14297 df-mplcoe 14298 |
| This theorem is referenced by: mplsubgfilemm 14332 mplsubgfilemcl 14333 mplsubgfileminv 14334 |
| Copyright terms: Public domain | W3C validator |