| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplbascoe | GIF version | ||
| Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
| mplval.z | ⊢ 0 = (0g‘𝑅) |
| mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mplbascoe | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | mplval.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mplval.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | mplval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | mplval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | eqid 2206 | . . . 4 ⊢ {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} | |
| 7 | 2, 3, 4, 5, 6 | mplvalcoe 14496 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )})) |
| 8 | 4 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 = (Base‘𝑆)) |
| 9 | fnpsr 14473 | . . . . 5 ⊢ mPwSer Fn (V × V) | |
| 10 | elex 2784 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 11 | elex 2784 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → 𝑅 ∈ V) | |
| 12 | fnovex 5984 | . . . . 5 ⊢ (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V) | |
| 13 | 9, 10, 11, 12 | mp3an3an 1356 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPwSer 𝑅) ∈ V) |
| 14 | 3, 13 | eqeltrid 2293 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 ∈ V) |
| 15 | ssrab2 3279 | . . . 4 ⊢ {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} ⊆ 𝐵 | |
| 16 | 15 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} ⊆ 𝐵) |
| 17 | 7, 8, 14, 16 | ressbas2d 12944 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} = (Base‘𝑃)) |
| 18 | 1, 17 | eqtr4id 2258 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 {crab 2489 Vcvv 2773 ⊆ wss 3167 class class class wbr 4047 × cxp 4677 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 < clt 8114 ℕ0cn0 9302 Basecbs 12876 0gc0g 13132 mPwSer cmps 14467 mPoly cmpl 14468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-tset 12972 df-rest 13117 df-topn 13118 df-topgen 13136 df-pt 13137 df-psr 14469 df-mplcoe 14470 |
| This theorem is referenced by: mplelbascoe 14498 mplval2g 14501 mplbasss 14502 |
| Copyright terms: Public domain | W3C validator |