ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplbascoe GIF version

Theorem mplbascoe 14325
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplbas.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
mplbascoe ((𝐼𝑉𝑅𝑊) → 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
Distinct variable groups:   𝐵,𝑓   𝑓,𝑎,𝑏,𝑘,𝐼   𝑅,𝑓,𝑎,𝑏,𝑘   0 ,𝑓
Allowed substitution hints:   𝐵(𝑘,𝑎,𝑏)   𝑃(𝑓,𝑘,𝑎,𝑏)   𝑆(𝑓,𝑘,𝑎,𝑏)   𝑈(𝑓,𝑘,𝑎,𝑏)   𝑉(𝑓,𝑘,𝑎,𝑏)   𝑊(𝑓,𝑘,𝑎,𝑏)   0 (𝑘,𝑎,𝑏)

Proof of Theorem mplbascoe
StepHypRef Expression
1 mplbas.u . 2 𝑈 = (Base‘𝑃)
2 mplval.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
3 mplval.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
4 mplval.b . . . 4 𝐵 = (Base‘𝑆)
5 mplval.z . . . 4 0 = (0g𝑅)
6 eqid 2196 . . . 4 {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )} = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
72, 3, 4, 5, 6mplvalcoe 14324 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}))
84a1i 9 . . 3 ((𝐼𝑉𝑅𝑊) → 𝐵 = (Base‘𝑆))
9 fnpsr 14301 . . . . 5 mPwSer Fn (V × V)
10 elex 2774 . . . . 5 (𝐼𝑉𝐼 ∈ V)
11 elex 2774 . . . . 5 (𝑅𝑊𝑅 ∈ V)
12 fnovex 5958 . . . . 5 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
139, 10, 11, 12mp3an3an 1354 . . . 4 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
143, 13eqeltrid 2283 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
15 ssrab2 3269 . . . 4 {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )} ⊆ 𝐵
1615a1i 9 . . 3 ((𝐼𝑉𝑅𝑊) → {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )} ⊆ 𝐵)
177, 8, 14, 16ressbas2d 12773 . 2 ((𝐼𝑉𝑅𝑊) → {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )} = (Base‘𝑃))
181, 17eqtr4id 2248 1 ((𝐼𝑉𝑅𝑊) → 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157   class class class wbr 4034   × cxp 4662   Fn wfn 5254  cfv 5259  (class class class)co 5925  𝑚 cmap 6716   < clt 8080  0cn0 9268  Basecbs 12705  0gc0g 12960   mPwSer cmps 14295   mPoly cmpl 14296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-i2m1 8003
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-tset 12801  df-rest 12945  df-topn 12946  df-topgen 12964  df-pt 12965  df-psr 14297  df-mplcoe 14298
This theorem is referenced by:  mplelbascoe  14326  mplval2g  14329  mplbasss  14330
  Copyright terms: Public domain W3C validator