ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossub GIF version

Theorem cossub 11923
Description: Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
cossub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))

Proof of Theorem cossub
StepHypRef Expression
1 negcl 8243 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 cosadd 11919 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (cos‘(𝐴 + -𝐵)) = (((cos‘𝐴) · (cos‘-𝐵)) − ((sin‘𝐴) · (sin‘-𝐵))))
31, 2sylan2 286 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + -𝐵)) = (((cos‘𝐴) · (cos‘-𝐵)) − ((sin‘𝐴) · (sin‘-𝐵))))
4 negsub 8291 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54fveq2d 5565 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + -𝐵)) = (cos‘(𝐴𝐵)))
6 cosneg 11909 . . . . . 6 (𝐵 ∈ ℂ → (cos‘-𝐵) = (cos‘𝐵))
76adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-𝐵) = (cos‘𝐵))
87oveq2d 5941 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘-𝐵)) = ((cos‘𝐴) · (cos‘𝐵)))
9 sinneg 11908 . . . . . . 7 (𝐵 ∈ ℂ → (sin‘-𝐵) = -(sin‘𝐵))
109adantl 277 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘-𝐵) = -(sin‘𝐵))
1110oveq2d 5941 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘-𝐵)) = ((sin‘𝐴) · -(sin‘𝐵)))
12 sincl 11888 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
13 sincl 11888 . . . . . 6 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
14 mulneg2 8439 . . . . . 6 (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((sin‘𝐴) · -(sin‘𝐵)) = -((sin‘𝐴) · (sin‘𝐵)))
1512, 13, 14syl2an 289 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · -(sin‘𝐵)) = -((sin‘𝐴) · (sin‘𝐵)))
1611, 15eqtrd 2229 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘-𝐵)) = -((sin‘𝐴) · (sin‘𝐵)))
178, 16oveq12d 5943 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘-𝐵)) − ((sin‘𝐴) · (sin‘-𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) − -((sin‘𝐴) · (sin‘𝐵))))
18 coscl 11889 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
19 coscl 11889 . . . . 5 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
20 mulcl 8023 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
2118, 19, 20syl2an 289 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
22 mulcl 8023 . . . . 5 (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
2312, 13, 22syl2an 289 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
2421, 23subnegd 8361 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) − -((sin‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))
2517, 24eqtrd 2229 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘-𝐵)) − ((sin‘𝐴) · (sin‘-𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))
263, 5, 253eqtr3d 2237 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  cc 7894   + caddc 7899   · cmul 7901  cmin 8214  -cneg 8215  sincsin 11826  cosccos 11827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833
This theorem is referenced by:  sinmul  11926  cosmul  11927  addcos  11928  subcos  11929  cos12dec  11950  cosmpi  15136  coshalfpim  15143
  Copyright terms: Public domain W3C validator