Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recj | GIF version |
Description: Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
recj | ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 10810 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 7941 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 7862 | . . . . . 6 ⊢ i ∈ ℂ | |
4 | imcl 10811 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 7941 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 7894 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 412 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | negsubd 8229 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
9 | mulneg2 8308 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
10 | 3, 5, 9 | sylancr 412 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
11 | 10 | oveq2d 5867 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
12 | remim 10817 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
13 | 8, 11, 12 | 3eqtr4rd 2214 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
14 | 13 | fveq2d 5498 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))) |
15 | 4 | renegcld 8292 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ) |
16 | crre 10814 | . . 3 ⊢ (((ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = (ℜ‘𝐴)) | |
17 | 1, 15, 16 | syl2anc 409 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = (ℜ‘𝐴)) |
18 | 14, 17 | eqtrd 2203 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ‘cfv 5196 (class class class)co 5851 ℂcc 7765 ℝcr 7766 ici 7769 + caddc 7770 · cmul 7772 − cmin 8083 -cneg 8084 ∗ccj 10796 ℜcre 10797 ℑcim 10798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-2 8930 df-cj 10799 df-re 10800 df-im 10801 |
This theorem is referenced by: cjcj 10840 ipcnval 10843 recji 10876 recjd 10906 |
Copyright terms: Public domain | W3C validator |