![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > efmival | GIF version |
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
efmival | ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7494 | . . . 4 ⊢ i ∈ ℂ | |
2 | mulneg12 7929 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
3 | 1, 2 | mpan 416 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) |
4 | 3 | fveq2d 5322 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴))) |
5 | negcl 7736 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
6 | efival 11077 | . . . 4 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴)))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴)))) |
8 | cosneg 11072 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
9 | sinneg 11071 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
10 | 9 | oveq2d 5682 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴))) |
11 | sincl 11051 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
12 | mulneg2 7928 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴))) | |
13 | 1, 11, 12 | sylancr 406 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴))) |
14 | 10, 13 | eqtrd 2121 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴))) |
15 | 8, 14 | oveq12d 5684 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴)))) |
16 | coscl 11052 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
17 | mulcl 7523 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ) | |
18 | 1, 11, 17 | sylancr 406 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ) |
19 | 16, 18 | negsubd 7853 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴)))) |
20 | 15, 19 | eqtrd 2121 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴)))) |
21 | 7, 20 | eqtrd 2121 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) |
22 | 4, 21 | eqtrd 2121 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 ‘cfv 5028 (class class class)co 5666 ℂcc 7402 ici 7406 + caddc 7407 · cmul 7409 − cmin 7707 -cneg 7708 expce 10986 sincsin 10988 cosccos 10989 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-mulrcl 7498 ax-addcom 7499 ax-mulcom 7500 ax-addass 7501 ax-mulass 7502 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-1rid 7506 ax-0id 7507 ax-rnegex 7508 ax-precex 7509 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 ax-pre-mulgt0 7516 ax-pre-mulext 7517 ax-arch 7518 ax-caucvg 7519 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-isom 5037 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-irdg 6149 df-frec 6170 df-1o 6195 df-oadd 6199 df-er 6306 df-en 6512 df-dom 6513 df-fin 6514 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-reap 8106 df-ap 8113 df-div 8194 df-inn 8477 df-2 8535 df-3 8536 df-4 8537 df-n0 8728 df-z 8805 df-uz 9074 df-q 9159 df-rp 9189 df-ico 9366 df-fz 9479 df-fzo 9608 df-iseq 9907 df-seq3 9908 df-exp 10009 df-fac 10188 df-ihash 10238 df-cj 10330 df-re 10331 df-im 10332 df-rsqrt 10485 df-abs 10486 df-clim 10721 df-isum 10797 df-ef 10992 df-sin 10994 df-cos 10995 |
This theorem is referenced by: sinadd 11081 cosadd 11082 |
Copyright terms: Public domain | W3C validator |