ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efmival GIF version

Theorem efmival 11734
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
efmival (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))

Proof of Theorem efmival
StepHypRef Expression
1 ax-icn 7903 . . . 4 i ∈ ℂ
2 mulneg12 8350 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
31, 2mpan 424 . . 3 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
43fveq2d 5518 . 2 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
5 negcl 8153 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
6 efival 11733 . . . 4 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
75, 6syl 14 . . 3 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
8 cosneg 11728 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
9 sinneg 11727 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
109oveq2d 5888 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
11 sincl 11707 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
12 mulneg2 8349 . . . . . . 7 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
131, 11, 12sylancr 414 . . . . . 6 (𝐴 ∈ ℂ → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
1410, 13eqtrd 2210 . . . . 5 (𝐴 ∈ ℂ → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
158, 14oveq12d 5890 . . . 4 (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
16 coscl 11708 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
17 mulcl 7935 . . . . . 6 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
181, 11, 17sylancr 414 . . . . 5 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ)
1916, 18negsubd 8270 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
2015, 19eqtrd 2210 . . 3 (𝐴 ∈ ℂ → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
217, 20eqtrd 2210 . 2 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
224, 21eqtrd 2210 1 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cfv 5215  (class class class)co 5872  cc 7806  ici 7810   + caddc 7811   · cmul 7813  cmin 8124  -cneg 8125  expce 11643  sincsin 11645  cosccos 11646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-isom 5224  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-frec 6389  df-1o 6414  df-oadd 6418  df-er 6532  df-en 6738  df-dom 6739  df-fin 6740  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-ico 9890  df-fz 10005  df-fzo 10138  df-seqfrec 10441  df-exp 10515  df-fac 10699  df-ihash 10749  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-clim 11280  df-sumdc 11355  df-ef 11649  df-sin 11651  df-cos 11652
This theorem is referenced by:  sinadd  11737  cosadd  11738
  Copyright terms: Public domain W3C validator