![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uz2m1nn | GIF version |
Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
uz2m1nn | ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 9666 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
2 | 1z 9343 | . . . 4 ⊢ 1 ∈ ℤ | |
3 | znnsub 9368 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) | |
4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 ↔ (𝑁 − 1) ∈ ℕ)) |
5 | 4 | biimpa 296 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 − 1) ∈ ℕ) |
6 | 1, 5 | sylbi 121 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 1c1 7873 < clt 8054 − cmin 8190 ℕcn 8982 2c2 9033 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: nn0ge2m1nnALT 9683 bernneq3 10733 exprmfct 12276 oddprm 12397 pockthg 12495 lgsval2lem 15126 lgseisenlem1 15186 lgseisenlem3 15188 |
Copyright terms: Public domain | W3C validator |