![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0pzuz | GIF version |
Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
Ref | Expression |
---|---|
nn0pzuz | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | nn0z 9327 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | zaddcl 9347 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) | |
4 | 2, 3 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) |
5 | zre 9311 | . . . 4 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ ℝ) | |
6 | nn0addge2 9277 | . . . 4 ⊢ ((𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) | |
7 | 5, 6 | sylan 283 | . . 3 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) |
8 | 7 | ancoms 268 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ≤ (𝑁 + 𝑍)) |
9 | eluz2 9588 | . 2 ⊢ ((𝑁 + 𝑍) ∈ (ℤ≥‘𝑍) ↔ (𝑍 ∈ ℤ ∧ (𝑁 + 𝑍) ∈ ℤ ∧ 𝑍 ≤ (𝑁 + 𝑍))) | |
10 | 1, 4, 8, 9 | syl3anbrc 1183 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5246 (class class class)co 5910 ℝcr 7861 + caddc 7865 ≤ cle 8045 ℕ0cn0 9230 ℤcz 9307 ℤ≥cuz 9582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-inn 8973 df-n0 9231 df-z 9308 df-uz 9583 |
This theorem is referenced by: gausslemma2dlem6 15125 |
Copyright terms: Public domain | W3C validator |