| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0pzuz | GIF version | ||
| Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| nn0pzuz | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ∈ ℤ) | |
| 2 | nn0z 9348 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 3 | zaddcl 9368 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) | |
| 4 | 2, 3 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) |
| 5 | zre 9332 | . . . 4 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ ℝ) | |
| 6 | nn0addge2 9298 | . . . 4 ⊢ ((𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) | |
| 7 | 5, 6 | sylan 283 | . . 3 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) |
| 8 | 7 | ancoms 268 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ≤ (𝑁 + 𝑍)) |
| 9 | eluz2 9609 | . 2 ⊢ ((𝑁 + 𝑍) ∈ (ℤ≥‘𝑍) ↔ (𝑍 ∈ ℤ ∧ (𝑁 + 𝑍) ∈ ℤ ∧ 𝑍 ≤ (𝑁 + 𝑍))) | |
| 10 | 1, 4, 8, 9 | syl3anbrc 1183 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 ℝcr 7880 + caddc 7884 ≤ cle 8064 ℕ0cn0 9251 ℤcz 9328 ℤ≥cuz 9603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 |
| This theorem is referenced by: gausslemma2dlem6 15318 |
| Copyright terms: Public domain | W3C validator |