Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0pzuz | GIF version |
Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
Ref | Expression |
---|---|
nn0pzuz | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | nn0z 9170 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | zaddcl 9190 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) | |
4 | 2, 3 | sylan 281 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ ℤ) |
5 | zre 9154 | . . . 4 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ ℝ) | |
6 | nn0addge2 9120 | . . . 4 ⊢ ((𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) | |
7 | 5, 6 | sylan 281 | . . 3 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑍 ≤ (𝑁 + 𝑍)) |
8 | 7 | ancoms 266 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → 𝑍 ≤ (𝑁 + 𝑍)) |
9 | eluz2 9428 | . 2 ⊢ ((𝑁 + 𝑍) ∈ (ℤ≥‘𝑍) ↔ (𝑍 ∈ ℤ ∧ (𝑁 + 𝑍) ∈ ℤ ∧ 𝑍 ≤ (𝑁 + 𝑍))) | |
10 | 1, 4, 8, 9 | syl3anbrc 1166 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 class class class wbr 3965 ‘cfv 5167 (class class class)co 5818 ℝcr 7714 + caddc 7718 ≤ cle 7896 ℕ0cn0 9073 ℤcz 9150 ℤ≥cuz 9422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |