ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quseccl0g GIF version

Theorem quseccl0g 13301
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13303 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
quseccl0.e = (𝐺 ~QG 𝑆)
quseccl0.h 𝐻 = (𝐺 /s )
quseccl0.c 𝐶 = (Base‘𝐺)
quseccl0.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
quseccl0g ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] 𝐵)

Proof of Theorem quseccl0g
StepHypRef Expression
1 quseccl0.e . . . 4 = (𝐺 ~QG 𝑆)
2 eqgex 13291 . . . . 5 ((𝐺𝑉𝑆𝑍) → (𝐺 ~QG 𝑆) ∈ V)
323adant2 1018 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐺 ~QG 𝑆) ∈ V)
41, 3eqeltrid 2280 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → ∈ V)
5 simp2 1000 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝑋𝐶)
6 ecelqsg 6642 . . 3 (( ∈ V ∧ 𝑋𝐶) → [𝑋] ∈ (𝐶 / ))
74, 5, 6syl2anc 411 . 2 ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] ∈ (𝐶 / ))
8 quseccl0.h . . . . 5 𝐻 = (𝐺 /s )
98a1i 9 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐻 = (𝐺 /s ))
10 quseccl0.c . . . . 5 𝐶 = (Base‘𝐺)
1110a1i 9 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐶 = (Base‘𝐺))
12 simp1 999 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐺𝑉)
139, 11, 4, 12qusbas 12910 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐶 / ) = (Base‘𝐻))
14 quseccl0.b . . 3 𝐵 = (Base‘𝐻)
1513, 14eqtr4di 2244 . 2 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐶 / ) = 𝐵)
167, 15eleqtrd 2272 1 ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cfv 5254  (class class class)co 5918  [cec 6585   / cqs 6586  Basecbs 12618   /s cqus 12883   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885  df-qus 12886  df-eqg 13242
This theorem is referenced by:  quseccl  13303  ecqusaddcl  13309
  Copyright terms: Public domain W3C validator