![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > quseccl0g | GIF version |
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13197 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.) |
Ref | Expression |
---|---|
quseccl0.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
quseccl0.h | ⊢ 𝐻 = (𝐺 /s ∼ ) |
quseccl0.c | ⊢ 𝐶 = (Base‘𝐺) |
quseccl0.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
quseccl0g | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quseccl0.e | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
2 | eqgex 13185 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) | |
3 | 2 | 3adant2 1018 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) |
4 | 1, 3 | eqeltrid 2276 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → ∼ ∈ V) |
5 | simp2 1000 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝑋 ∈ 𝐶) | |
6 | ecelqsg 6618 | . . 3 ⊢ (( ∼ ∈ V ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ (𝐶 / ∼ )) | |
7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ (𝐶 / ∼ )) |
8 | quseccl0.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s ∼ ) | |
9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐻 = (𝐺 /s ∼ )) |
10 | quseccl0.c | . . . . 5 ⊢ 𝐶 = (Base‘𝐺) | |
11 | 10 | a1i 9 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐶 = (Base‘𝐺)) |
12 | simp1 999 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐺 ∈ 𝑉) | |
13 | 9, 11, 4, 12 | qusbas 12815 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐶 / ∼ ) = (Base‘𝐻)) |
14 | quseccl0.b | . . 3 ⊢ 𝐵 = (Base‘𝐻) | |
15 | 13, 14 | eqtr4di 2240 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐶 / ∼ ) = 𝐵) |
16 | 7, 15 | eleqtrd 2268 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ‘cfv 5238 (class class class)co 5900 [cec 6561 / cqs 6562 Basecbs 12523 /s cqus 12788 ~QG cqg 13133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-ov 5903 df-oprab 5904 df-mpo 5905 df-ec 6565 df-qs 6569 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-ndx 12526 df-slot 12527 df-base 12529 df-plusg 12613 df-mulr 12614 df-iimas 12790 df-qus 12791 df-eqg 13136 |
This theorem is referenced by: quseccl 13197 ecqusaddcl 13203 |
Copyright terms: Public domain | W3C validator |