| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > quseccl0g | GIF version | ||
| Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13765 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.) |
| Ref | Expression |
|---|---|
| quseccl0.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
| quseccl0.h | ⊢ 𝐻 = (𝐺 /s ∼ ) |
| quseccl0.c | ⊢ 𝐶 = (Base‘𝐺) |
| quseccl0.b | ⊢ 𝐵 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| quseccl0g | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quseccl0.e | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
| 2 | eqgex 13753 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) | |
| 3 | 2 | 3adant2 1040 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐺 ~QG 𝑆) ∈ V) |
| 4 | 1, 3 | eqeltrid 2316 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → ∼ ∈ V) |
| 5 | simp2 1022 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝑋 ∈ 𝐶) | |
| 6 | ecelqsg 6733 | . . 3 ⊢ (( ∼ ∈ V ∧ 𝑋 ∈ 𝐶) → [𝑋] ∼ ∈ (𝐶 / ∼ )) | |
| 7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ (𝐶 / ∼ )) |
| 8 | quseccl0.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s ∼ ) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐻 = (𝐺 /s ∼ )) |
| 10 | quseccl0.c | . . . . 5 ⊢ 𝐶 = (Base‘𝐺) | |
| 11 | 10 | a1i 9 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐶 = (Base‘𝐺)) |
| 12 | simp1 1021 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → 𝐺 ∈ 𝑉) | |
| 13 | 9, 11, 4, 12 | qusbas 13355 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐶 / ∼ ) = (Base‘𝐻)) |
| 14 | quseccl0.b | . . 3 ⊢ 𝐵 = (Base‘𝐻) | |
| 15 | 13, 14 | eqtr4di 2280 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → (𝐶 / ∼ ) = 𝐵) |
| 16 | 7, 15 | eleqtrd 2308 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ‘cfv 5317 (class class class)co 6000 [cec 6676 / cqs 6677 Basecbs 13027 /s cqus 13328 ~QG cqg 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-ec 6680 df-qs 6684 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-iimas 13330 df-qus 13331 df-eqg 13704 |
| This theorem is referenced by: quseccl 13765 ecqusaddcl 13771 |
| Copyright terms: Public domain | W3C validator |