ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quseccl0g GIF version

Theorem quseccl0g 13763
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13765 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
quseccl0.e = (𝐺 ~QG 𝑆)
quseccl0.h 𝐻 = (𝐺 /s )
quseccl0.c 𝐶 = (Base‘𝐺)
quseccl0.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
quseccl0g ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] 𝐵)

Proof of Theorem quseccl0g
StepHypRef Expression
1 quseccl0.e . . . 4 = (𝐺 ~QG 𝑆)
2 eqgex 13753 . . . . 5 ((𝐺𝑉𝑆𝑍) → (𝐺 ~QG 𝑆) ∈ V)
323adant2 1040 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐺 ~QG 𝑆) ∈ V)
41, 3eqeltrid 2316 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → ∈ V)
5 simp2 1022 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝑋𝐶)
6 ecelqsg 6733 . . 3 (( ∈ V ∧ 𝑋𝐶) → [𝑋] ∈ (𝐶 / ))
74, 5, 6syl2anc 411 . 2 ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] ∈ (𝐶 / ))
8 quseccl0.h . . . . 5 𝐻 = (𝐺 /s )
98a1i 9 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐻 = (𝐺 /s ))
10 quseccl0.c . . . . 5 𝐶 = (Base‘𝐺)
1110a1i 9 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐶 = (Base‘𝐺))
12 simp1 1021 . . . 4 ((𝐺𝑉𝑋𝐶𝑆𝑍) → 𝐺𝑉)
139, 11, 4, 12qusbas 13355 . . 3 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐶 / ) = (Base‘𝐻))
14 quseccl0.b . . 3 𝐵 = (Base‘𝐻)
1513, 14eqtr4di 2280 . 2 ((𝐺𝑉𝑋𝐶𝑆𝑍) → (𝐶 / ) = 𝐵)
167, 15eleqtrd 2308 1 ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cfv 5317  (class class class)co 6000  [cec 6676   / cqs 6677  Basecbs 13027   /s cqus 13328   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330  df-qus 13331  df-eqg 13704
This theorem is referenced by:  quseccl  13765  ecqusaddcl  13771
  Copyright terms: Public domain W3C validator