| Step | Hyp | Ref
| Expression |
| 1 | | elq 9698 |
. . 3
⊢ (𝑄 ∈ ℚ ↔
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℕ
𝑄 = (𝑎 / 𝑏)) |
| 2 | 1 | biimpi 120 |
. 2
⊢ (𝑄 ∈ ℚ →
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℕ
𝑄 = (𝑎 / 𝑏)) |
| 3 | | simplrl 535 |
. . . . . . . . 9
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑎 ∈ ℤ) |
| 4 | 3 | adantr 276 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℤ) |
| 5 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑏 ∈ ℕ) |
| 6 | 5 | adantr 276 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℕ) |
| 7 | | znq 9700 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℚ) |
| 8 | | qre 9701 |
. . . . . . . . 9
⊢ ((𝑎 / 𝑏) ∈ ℚ → (𝑎 / 𝑏) ∈ ℝ) |
| 9 | 7, 8 | syl 14 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℝ) |
| 10 | 4, 6, 9 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ∈ ℝ) |
| 11 | | sqrt2re 12341 |
. . . . . . . 8
⊢
(√‘2) ∈ ℝ |
| 12 | 11 | a1i 9 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) ∈
ℝ) |
| 13 | | 0red 8029 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ∈
ℝ) |
| 14 | 4 | zcnd 9451 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℂ) |
| 15 | 6 | nncnd 9006 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℂ) |
| 16 | 6 | nnap0d 9038 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 # 0) |
| 17 | 14, 15, 16 | divrecapd 8822 |
. . . . . . . . 9
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) = (𝑎 · (1 / 𝑏))) |
| 18 | 4 | zred 9450 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ) |
| 19 | 6 | nnrecred 9039 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (1 / 𝑏) ∈ ℝ) |
| 20 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ≤ 0) |
| 21 | | 1red 8043 |
. . . . . . . . . . 11
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 1 ∈
ℝ) |
| 22 | 6 | nnrpd 9771 |
. . . . . . . . . . 11
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℝ+) |
| 23 | | 0le1 8510 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ 1) |
| 25 | 21, 22, 24 | divge0d 9814 |
. . . . . . . . . 10
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ (1 / 𝑏)) |
| 26 | | mulle0r 8973 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℝ ∧ (1 / 𝑏) ∈ ℝ) ∧ (𝑎 ≤ 0 ∧ 0 ≤ (1 / 𝑏))) → (𝑎 · (1 / 𝑏)) ≤ 0) |
| 27 | 18, 19, 20, 25, 26 | syl22anc 1250 |
. . . . . . . . 9
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 · (1 / 𝑏)) ≤ 0) |
| 28 | 17, 27 | eqbrtrd 4056 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ≤ 0) |
| 29 | | 2re 9062 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 30 | | 2pos 9083 |
. . . . . . . . . 10
⊢ 0 <
2 |
| 31 | 29, 30 | sqrtgt0ii 11298 |
. . . . . . . . 9
⊢ 0 <
(√‘2) |
| 32 | 31 | a1i 9 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 <
(√‘2)) |
| 33 | 10, 13, 12, 28, 32 | lelttrd 8153 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) < (√‘2)) |
| 34 | 10, 12, 33 | gtapd 8666 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) # (𝑎 / 𝑏)) |
| 35 | 3 | adantr 276 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℤ) |
| 36 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 0 < 𝑎) |
| 37 | | elnnz 9338 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 <
𝑎)) |
| 38 | 35, 36, 37 | sylanbrc 417 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℕ) |
| 39 | 5 | adantr 276 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑏 ∈ ℕ) |
| 40 | | sqrt2irraplemnn 12357 |
. . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) →
(√‘2) # (𝑎 /
𝑏)) |
| 41 | 38, 39, 40 | syl2anc 411 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → (√‘2) # (𝑎 / 𝑏)) |
| 42 | | 0z 9339 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 43 | | zlelttric 9373 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑎 ≤ 0
∨ 0 < 𝑎)) |
| 44 | 42, 43 | mpan2 425 |
. . . . . . . 8
⊢ (𝑎 ∈ ℤ → (𝑎 ≤ 0 ∨ 0 < 𝑎)) |
| 45 | 44 | ad2antrl 490 |
. . . . . . 7
⊢ ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑎 ≤ 0 ∨ 0 < 𝑎)) |
| 46 | 45 | adantr 276 |
. . . . . 6
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (𝑎 ≤ 0 ∨ 0 < 𝑎)) |
| 47 | 34, 41, 46 | mpjaodan 799 |
. . . . 5
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # (𝑎 / 𝑏)) |
| 48 | | simpr 110 |
. . . . 5
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑄 = (𝑎 / 𝑏)) |
| 49 | 47, 48 | breqtrrd 4062 |
. . . 4
⊢ (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # 𝑄) |
| 50 | 49 | ex 115 |
. . 3
⊢ ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄)) |
| 51 | 50 | rexlimdvva 2622 |
. 2
⊢ (𝑄 ∈ ℚ →
(∃𝑎 ∈ ℤ
∃𝑏 ∈ ℕ
𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄)) |
| 52 | 2, 51 | mpd 13 |
1
⊢ (𝑄 ∈ ℚ →
(√‘2) # 𝑄) |