ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrap GIF version

Theorem sqrt2irrap 12546
Description: The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12528. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irrap (𝑄 ∈ ℚ → (√‘2) # 𝑄)

Proof of Theorem sqrt2irrap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9750 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
21biimpi 120 . 2 (𝑄 ∈ ℚ → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
3 simplrl 535 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑎 ∈ ℤ)
43adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℤ)
5 simplrr 536 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑏 ∈ ℕ)
65adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℕ)
7 znq 9752 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℚ)
8 qre 9753 . . . . . . . . 9 ((𝑎 / 𝑏) ∈ ℚ → (𝑎 / 𝑏) ∈ ℝ)
97, 8syl 14 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℝ)
104, 6, 9syl2anc 411 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ∈ ℝ)
11 sqrt2re 12529 . . . . . . . 8 (√‘2) ∈ ℝ
1211a1i 9 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) ∈ ℝ)
13 0red 8080 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ∈ ℝ)
144zcnd 9503 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℂ)
156nncnd 9057 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℂ)
166nnap0d 9089 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 # 0)
1714, 15, 16divrecapd 8873 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) = (𝑎 · (1 / 𝑏)))
184zred 9502 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
196nnrecred 9090 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (1 / 𝑏) ∈ ℝ)
20 simpr 110 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ≤ 0)
21 1red 8094 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 1 ∈ ℝ)
226nnrpd 9823 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℝ+)
23 0le1 8561 . . . . . . . . . . . 12 0 ≤ 1
2423a1i 9 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ 1)
2521, 22, 24divge0d 9866 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ (1 / 𝑏))
26 mulle0r 9024 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ (1 / 𝑏) ∈ ℝ) ∧ (𝑎 ≤ 0 ∧ 0 ≤ (1 / 𝑏))) → (𝑎 · (1 / 𝑏)) ≤ 0)
2718, 19, 20, 25, 26syl22anc 1251 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 · (1 / 𝑏)) ≤ 0)
2817, 27eqbrtrd 4069 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ≤ 0)
29 2re 9113 . . . . . . . . . 10 2 ∈ ℝ
30 2pos 9134 . . . . . . . . . 10 0 < 2
3129, 30sqrtgt0ii 11486 . . . . . . . . 9 0 < (√‘2)
3231a1i 9 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 < (√‘2))
3310, 13, 12, 28, 32lelttrd 8204 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) < (√‘2))
3410, 12, 33gtapd 8717 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) # (𝑎 / 𝑏))
353adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℤ)
36 simpr 110 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 0 < 𝑎)
37 elnnz 9389 . . . . . . . 8 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
3835, 36, 37sylanbrc 417 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℕ)
395adantr 276 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑏 ∈ ℕ)
40 sqrt2irraplemnn 12545 . . . . . . 7 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (√‘2) # (𝑎 / 𝑏))
4138, 39, 40syl2anc 411 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → (√‘2) # (𝑎 / 𝑏))
42 0z 9390 . . . . . . . . 9 0 ∈ ℤ
43 zlelttric 9424 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4442, 43mpan2 425 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4544ad2antrl 490 . . . . . . 7 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4645adantr 276 . . . . . 6 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4734, 41, 46mpjaodan 800 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # (𝑎 / 𝑏))
48 simpr 110 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑄 = (𝑎 / 𝑏))
4947, 48breqtrrd 4075 . . . 4 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # 𝑄)
5049ex 115 . . 3 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
5150rexlimdvva 2632 . 2 (𝑄 ∈ ℚ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
522, 51mpd 13 1 (𝑄 ∈ ℚ → (√‘2) # 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4047  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932  1c1 7933   · cmul 7937   < clt 8114  cle 8115   # cap 8661   / cdiv 8752  cn 9043  2c2 9094  cz 9379  cq 9747  csqrt 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-prm 12474
This theorem is referenced by:  2irrexpqap  15494
  Copyright terms: Public domain W3C validator