ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrap GIF version

Theorem sqrt2irrap 12054
Description: The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12036. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irrap (𝑄 ∈ ℚ → (√‘2) # 𝑄)

Proof of Theorem sqrt2irrap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9531 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
21biimpi 119 . 2 (𝑄 ∈ ℚ → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
3 simplrl 525 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑎 ∈ ℤ)
43adantr 274 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℤ)
5 simplrr 526 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑏 ∈ ℕ)
65adantr 274 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℕ)
7 znq 9533 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℚ)
8 qre 9534 . . . . . . . . 9 ((𝑎 / 𝑏) ∈ ℚ → (𝑎 / 𝑏) ∈ ℝ)
97, 8syl 14 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℝ)
104, 6, 9syl2anc 409 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ∈ ℝ)
11 sqrt2re 12037 . . . . . . . 8 (√‘2) ∈ ℝ
1211a1i 9 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) ∈ ℝ)
13 0red 7879 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ∈ ℝ)
144zcnd 9287 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℂ)
156nncnd 8847 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℂ)
166nnap0d 8879 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 # 0)
1714, 15, 16divrecapd 8666 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) = (𝑎 · (1 / 𝑏)))
184zred 9286 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
196nnrecred 8880 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (1 / 𝑏) ∈ ℝ)
20 simpr 109 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ≤ 0)
21 1red 7893 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 1 ∈ ℝ)
226nnrpd 9601 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℝ+)
23 0le1 8356 . . . . . . . . . . . 12 0 ≤ 1
2423a1i 9 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ 1)
2521, 22, 24divge0d 9644 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ (1 / 𝑏))
26 mulle0r 8815 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ (1 / 𝑏) ∈ ℝ) ∧ (𝑎 ≤ 0 ∧ 0 ≤ (1 / 𝑏))) → (𝑎 · (1 / 𝑏)) ≤ 0)
2718, 19, 20, 25, 26syl22anc 1221 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 · (1 / 𝑏)) ≤ 0)
2817, 27eqbrtrd 3986 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ≤ 0)
29 2re 8903 . . . . . . . . . 10 2 ∈ ℝ
30 2pos 8924 . . . . . . . . . 10 0 < 2
3129, 30sqrtgt0ii 11031 . . . . . . . . 9 0 < (√‘2)
3231a1i 9 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 < (√‘2))
3310, 13, 12, 28, 32lelttrd 8000 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) < (√‘2))
3410, 12, 33gtapd 8512 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) # (𝑎 / 𝑏))
353adantr 274 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℤ)
36 simpr 109 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 0 < 𝑎)
37 elnnz 9177 . . . . . . . 8 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
3835, 36, 37sylanbrc 414 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℕ)
395adantr 274 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑏 ∈ ℕ)
40 sqrt2irraplemnn 12053 . . . . . . 7 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (√‘2) # (𝑎 / 𝑏))
4138, 39, 40syl2anc 409 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → (√‘2) # (𝑎 / 𝑏))
42 0z 9178 . . . . . . . . 9 0 ∈ ℤ
43 zlelttric 9212 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4442, 43mpan2 422 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4544ad2antrl 482 . . . . . . 7 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4645adantr 274 . . . . . 6 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4734, 41, 46mpjaodan 788 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # (𝑎 / 𝑏))
48 simpr 109 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑄 = (𝑎 / 𝑏))
4947, 48breqtrrd 3992 . . . 4 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # 𝑄)
5049ex 114 . . 3 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
5150rexlimdvva 2582 . 2 (𝑄 ∈ ℚ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
522, 51mpd 13 1 (𝑄 ∈ ℚ → (√‘2) # 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  cfv 5170  (class class class)co 5824  cr 7731  0cc0 7732  1c1 7733   · cmul 7737   < clt 7912  cle 7913   # cap 8456   / cdiv 8545  cn 8833  2c2 8884  cz 9167  cq 9528  csqrt 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-1o 6363  df-2o 6364  df-er 6480  df-en 6686  df-sup 6928  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-fl 10169  df-mod 10222  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-dvds 11684  df-gcd 11829  df-prm 11984
This theorem is referenced by:  2irrexpqap  13295
  Copyright terms: Public domain W3C validator