| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rhmeql | GIF version | ||
| Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rhmeql | ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm 14134 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 2 | rhmghm 14134 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
| 3 | ghmeql 13812 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
| 5 | eqid 2229 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 6 | eqid 2229 | . . . 4 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
| 7 | 5, 6 | rhmmhm 14131 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
| 8 | 5, 6 | rhmmhm 14131 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
| 9 | mhmeql 13533 | . . 3 ⊢ ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))) | |
| 10 | 7, 8, 9 | syl2an 289 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))) |
| 11 | rhmrcl1 14127 | . . . 4 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
| 12 | 11 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → 𝑆 ∈ Ring) |
| 13 | 5 | issubrg3 14219 | . . 3 ⊢ (𝑆 ∈ Ring → (dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))))) |
| 14 | 12, 13 | syl 14 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))))) |
| 15 | 4, 10, 14 | mpbir2and 950 | 1 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∩ cin 3196 dom cdm 4719 ‘cfv 5318 (class class class)co 6007 MndHom cmhm 13498 SubMndcsubmnd 13499 SubGrpcsubg 13712 GrpHom cghm 13785 mulGrpcmgp 13891 Ringcrg 13967 RingHom crh 14122 SubRingcsubrg 14189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-submnd 13501 df-grp 13544 df-minusg 13545 df-subg 13715 df-ghm 13786 df-mgp 13892 df-ur 13931 df-ring 13969 df-rhm 14124 df-subrg 14191 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |