![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version |
Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
Ref | Expression |
---|---|
elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9628 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | eleq2i 2260 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 ‘cfv 5254 1c1 7873 ℕcn 8982 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 df-uz 9593 |
This theorem is referenced by: eluzge3nn 9637 uznnssnn 9642 elnndc 9677 uzsubsubfz1 10114 elfz1end 10121 fznn 10155 fzo1fzo0n0 10250 elfzonlteqm1 10277 rebtwn2z 10323 nnsinds 10516 exp3vallem 10611 exp1 10616 expp1 10617 facp1 10801 faclbnd 10812 bcn1 10829 resqrexlemf1 11152 resqrexlemfp1 11153 summodclem3 11523 summodclem2a 11524 fsum3 11530 fsumcl2lem 11541 fsumadd 11549 sumsnf 11552 fsummulc2 11591 trireciplem 11643 geo2lim 11659 geoisum1 11662 geoisum1c 11663 cvgratnnlemnexp 11667 cvgratz 11675 prodmodclem3 11718 prodmodclem2a 11719 fprodseq 11726 fprodmul 11734 prodsnf 11735 fprodfac 11758 dvdsfac 12002 gcdsupex 12094 gcdsupcl 12095 prmind2 12258 eulerthlemrprm 12367 eulerthlema 12368 pcmpt 12481 prmunb 12500 nninfdclemp1 12607 structfn 12637 mulgnngsum 13197 mulg1 13199 mulgnndir 13221 lgsval2lem 15126 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 2sqlem10 15212 cvgcmp2nlemabs 15522 trilpolemisumle 15528 nconstwlpolem0 15553 |
Copyright terms: Public domain | W3C validator |