Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version |
Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
Ref | Expression |
---|---|
elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9497 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1 | eleq2i 2232 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ‘cfv 5187 1c1 7750 ℕcn 8853 ℤ≥cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-z 9188 df-uz 9463 |
This theorem is referenced by: eluzge3nn 9506 uznnssnn 9511 elnndc 9546 uzsubsubfz1 9979 elfz1end 9986 fznn 10020 fzo1fzo0n0 10114 elfzonlteqm1 10141 rebtwn2z 10186 nnsinds 10374 exp3vallem 10452 exp1 10457 expp1 10458 facp1 10639 faclbnd 10650 bcn1 10667 resqrexlemf1 10946 resqrexlemfp1 10947 summodclem3 11317 summodclem2a 11318 fsum3 11324 fsumcl2lem 11335 fsumadd 11343 sumsnf 11346 fsummulc2 11385 trireciplem 11437 geo2lim 11453 geoisum1 11456 geoisum1c 11457 cvgratnnlemnexp 11461 cvgratz 11469 prodmodclem3 11512 prodmodclem2a 11513 fprodseq 11520 fprodmul 11528 prodsnf 11529 fprodfac 11552 dvdsfac 11794 gcdsupex 11886 gcdsupcl 11887 prmind2 12048 eulerthlemrprm 12157 eulerthlema 12158 pcmpt 12269 prmunb 12288 nninfdclemp1 12379 structfn 12409 lgsval2lem 13511 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 2sqlem10 13561 cvgcmp2nlemabs 13871 trilpolemisumle 13877 nconstwlpolem0 13901 |
Copyright terms: Public domain | W3C validator |