| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9656 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | eleq2i 2263 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 ‘cfv 5259 1c1 7899 ℕcn 9009 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-z 9346 df-uz 9621 |
| This theorem is referenced by: eluzge3nn 9665 uznnssnn 9670 elnndc 9705 uzsubsubfz1 10142 elfz1end 10149 fznn 10183 fzo1fzo0n0 10278 elfzonlteqm1 10305 rebtwn2z 10363 nnsinds 10556 exp3vallem 10651 exp1 10656 expp1 10657 facp1 10841 faclbnd 10852 bcn1 10869 resqrexlemf1 11192 resqrexlemfp1 11193 summodclem3 11564 summodclem2a 11565 fsum3 11571 fsumcl2lem 11582 fsumadd 11590 sumsnf 11593 fsummulc2 11632 trireciplem 11684 geo2lim 11700 geoisum1 11703 geoisum1c 11704 cvgratnnlemnexp 11708 cvgratz 11716 prodmodclem3 11759 prodmodclem2a 11760 fprodseq 11767 fprodmul 11775 prodsnf 11776 fprodfac 11799 dvdsfac 12044 gcdsupex 12151 gcdsupcl 12152 prmind2 12315 eulerthlemrprm 12424 eulerthlema 12425 pcmpt 12539 prmunb 12558 nninfdclemp1 12694 structfn 12724 mulgnngsum 13335 mulg1 13337 mulgnndir 13359 lgsval2lem 15359 lgsdir 15384 lgsdilem2 15385 lgsdi 15386 lgsne0 15387 2lgslem1a 15437 2sqlem10 15474 cvgcmp2nlemabs 15789 trilpolemisumle 15795 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |