| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9754 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | eleq2i 2296 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ‘cfv 5317 1c1 7996 ℕcn 9106 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 |
| This theorem is referenced by: eluzge3nn 9763 uznnssnn 9768 elnndc 9803 uzsubsubfz1 10240 elfz1end 10247 fznn 10281 fzo1fzo0n0 10379 elfzonlteqm1 10411 rebtwn2z 10469 nnsinds 10662 exp3vallem 10757 exp1 10762 expp1 10763 facp1 10947 faclbnd 10958 bcn1 10975 resqrexlemf1 11514 resqrexlemfp1 11515 summodclem3 11886 summodclem2a 11887 fsum3 11893 fsumcl2lem 11904 fsumadd 11912 sumsnf 11915 fsummulc2 11954 trireciplem 12006 geo2lim 12022 geoisum1 12025 geoisum1c 12026 cvgratnnlemnexp 12030 cvgratz 12038 prodmodclem3 12081 prodmodclem2a 12082 fprodseq 12089 fprodmul 12097 prodsnf 12098 fprodfac 12121 dvdsfac 12366 gcdsupex 12473 gcdsupcl 12474 prmind2 12637 eulerthlemrprm 12746 eulerthlema 12747 pcmpt 12861 prmunb 12880 nninfdclemp1 13016 structfn 13046 mulgnngsum 13659 mulg1 13661 mulgnndir 13683 lgsval2lem 15683 lgsdir 15708 lgsdilem2 15709 lgsdi 15710 lgsne0 15711 2lgslem1a 15761 2sqlem10 15798 cvgcmp2nlemabs 16359 trilpolemisumle 16365 nconstwlpolem0 16390 |
| Copyright terms: Public domain | W3C validator |