| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9704 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | eleq2i 2273 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ‘cfv 5280 1c1 7946 ℕcn 9056 ℤ≥cuz 9668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-z 9393 df-uz 9669 |
| This theorem is referenced by: eluzge3nn 9713 uznnssnn 9718 elnndc 9753 uzsubsubfz1 10190 elfz1end 10197 fznn 10231 fzo1fzo0n0 10329 elfzonlteqm1 10361 rebtwn2z 10419 nnsinds 10612 exp3vallem 10707 exp1 10712 expp1 10713 facp1 10897 faclbnd 10908 bcn1 10925 resqrexlemf1 11394 resqrexlemfp1 11395 summodclem3 11766 summodclem2a 11767 fsum3 11773 fsumcl2lem 11784 fsumadd 11792 sumsnf 11795 fsummulc2 11834 trireciplem 11886 geo2lim 11902 geoisum1 11905 geoisum1c 11906 cvgratnnlemnexp 11910 cvgratz 11918 prodmodclem3 11961 prodmodclem2a 11962 fprodseq 11969 fprodmul 11977 prodsnf 11978 fprodfac 12001 dvdsfac 12246 gcdsupex 12353 gcdsupcl 12354 prmind2 12517 eulerthlemrprm 12626 eulerthlema 12627 pcmpt 12741 prmunb 12760 nninfdclemp1 12896 structfn 12926 mulgnngsum 13538 mulg1 13540 mulgnndir 13562 lgsval2lem 15562 lgsdir 15587 lgsdilem2 15588 lgsdi 15589 lgsne0 15590 2lgslem1a 15640 2sqlem10 15677 cvgcmp2nlemabs 16112 trilpolemisumle 16118 nconstwlpolem0 16143 |
| Copyright terms: Public domain | W3C validator |