| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | GIF version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz | ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9683 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1 | eleq2i 2271 | 1 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2175 ‘cfv 5270 1c1 7925 ℕcn 9035 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 df-uz 9648 |
| This theorem is referenced by: eluzge3nn 9692 uznnssnn 9697 elnndc 9732 uzsubsubfz1 10169 elfz1end 10176 fznn 10210 fzo1fzo0n0 10305 elfzonlteqm1 10337 rebtwn2z 10395 nnsinds 10588 exp3vallem 10683 exp1 10688 expp1 10689 facp1 10873 faclbnd 10884 bcn1 10901 resqrexlemf1 11261 resqrexlemfp1 11262 summodclem3 11633 summodclem2a 11634 fsum3 11640 fsumcl2lem 11651 fsumadd 11659 sumsnf 11662 fsummulc2 11701 trireciplem 11753 geo2lim 11769 geoisum1 11772 geoisum1c 11773 cvgratnnlemnexp 11777 cvgratz 11785 prodmodclem3 11828 prodmodclem2a 11829 fprodseq 11836 fprodmul 11844 prodsnf 11845 fprodfac 11868 dvdsfac 12113 gcdsupex 12220 gcdsupcl 12221 prmind2 12384 eulerthlemrprm 12493 eulerthlema 12494 pcmpt 12608 prmunb 12627 nninfdclemp1 12763 structfn 12793 mulgnngsum 13405 mulg1 13407 mulgnndir 13429 lgsval2lem 15429 lgsdir 15454 lgsdilem2 15455 lgsdi 15456 lgsne0 15457 2lgslem1a 15507 2sqlem10 15544 cvgcmp2nlemabs 15904 trilpolemisumle 15910 nconstwlpolem0 15935 |
| Copyright terms: Public domain | W3C validator |