![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subap0d | GIF version |
Description: Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
subap0d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subap0d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subap0d.ap | ⊢ (𝜑 → 𝐴 # 𝐵) |
Ref | Expression |
---|---|
subap0d | ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subap0d.ap | . 2 ⊢ (𝜑 → 𝐴 # 𝐵) | |
2 | subap0d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | subap0d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subap0 8625 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) |
6 | 1, 5 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5892 ℂcc 7834 0cc0 7836 − cmin 8153 # cap 8563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5234 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8019 df-mnf 8020 df-ltxr 8022 df-sub 8155 df-neg 8156 df-reap 8557 df-ap 8564 |
This theorem is referenced by: abssubap0 11126 climuni 11328 pwm1geoserap1 11543 geolim 11546 geolim2 11547 georeclim 11548 geoisum1c 11555 tanaddap 11774 cnopnap 14531 limcimo 14571 dvlemap 14586 dvconst 14598 dvid 14599 dvcnp2cntop 14600 dvaddxxbr 14602 dvmulxxbr 14603 dvcoapbr 14608 dvcjbr 14609 dvrecap 14614 dvef 14625 |
Copyright terms: Public domain | W3C validator |