![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subap0d | GIF version |
Description: Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
subap0d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subap0d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subap0d.ap | ⊢ (𝜑 → 𝐴 # 𝐵) |
Ref | Expression |
---|---|
subap0d | ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subap0d.ap | . 2 ⊢ (𝜑 → 𝐴 # 𝐵) | |
2 | subap0d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | subap0d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subap0 8664 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) |
6 | 1, 5 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 − cmin 8192 # cap 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 |
This theorem is referenced by: abssubap0 11237 climuni 11439 pwm1geoserap1 11654 geolim 11657 geolim2 11658 georeclim 11659 geoisum1c 11666 tanaddap 11885 cnopnap 14790 limcimo 14844 dvlemap 14859 dvconst 14873 dvid 14874 dvconstre 14875 dvidre 14876 dvconstss 14877 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 dvef 14906 |
Copyright terms: Public domain | W3C validator |