| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subap0d | GIF version | ||
| Description: Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| subap0d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| subap0d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subap0d.ap | ⊢ (𝜑 → 𝐴 # 𝐵) |
| Ref | Expression |
|---|---|
| subap0d | ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subap0d.ap | . 2 ⊢ (𝜑 → 𝐴 # 𝐵) | |
| 2 | subap0d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | subap0d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | subap0 8731 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) |
| 6 | 1, 5 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℂcc 7938 0cc0 7940 − cmin 8258 # cap 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 |
| This theorem is referenced by: abssubap0 11471 climuni 11674 pwm1geoserap1 11889 geolim 11892 geolim2 11893 georeclim 11894 geoisum1c 11901 tanaddap 12120 cnopnap 15153 limcimo 15207 dvlemap 15222 dvconst 15236 dvid 15237 dvconstre 15238 dvidre 15239 dvconstss 15240 dvcnp2cntop 15241 dvaddxxbr 15243 dvmulxxbr 15244 dvcoapbr 15249 dvcjbr 15250 dvrecap 15255 dvef 15269 |
| Copyright terms: Public domain | W3C validator |