| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgredgm | GIF version | ||
| Description: An edge of a hypergraph is an inhabited subset of vertices. (Contributed by AV, 28-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgredgm | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑥 𝑥 ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgvalg 15854 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2229 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | 2, 3 | uhgrfm 15867 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑥 𝑥 ∈ 𝑦}) |
| 5 | 4 | frnd 5482 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ {𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑥 𝑥 ∈ 𝑦}) |
| 6 | 1, 5 | eqsstrd 3260 | . . 3 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ {𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑥 𝑥 ∈ 𝑦}) |
| 7 | 6 | sselda 3224 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ {𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑥 𝑥 ∈ 𝑦}) |
| 8 | eleq2 2293 | . . . 4 ⊢ (𝑦 = 𝐸 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐸)) | |
| 9 | 8 | exbidv 1871 | . . 3 ⊢ (𝑦 = 𝐸 → (∃𝑥 𝑥 ∈ 𝑦 ↔ ∃𝑥 𝑥 ∈ 𝐸)) |
| 10 | 9 | elrab 2959 | . 2 ⊢ (𝐸 ∈ {𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑥 𝑥 ∈ 𝑦} ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑥 𝑥 ∈ 𝐸)) |
| 11 | 7, 10 | sylib 122 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑥 𝑥 ∈ 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 dom cdm 4718 ran crn 4719 ‘cfv 5317 Vtxcvtx 15807 iEdgciedg 15808 Edgcedg 15852 UHGraphcuhgr 15861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 df-edg 15853 df-uhgrm 15863 |
| This theorem is referenced by: edguhgr 15929 |
| Copyright terms: Public domain | W3C validator |