![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotstnscsi | Structured version Visualization version GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 21043 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotstnscsi | ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 12315 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 5lt9 12430 | . . . 4 ⊢ 5 < 9 | |
3 | 1, 2 | gtneii 11342 | . . 3 ⊢ 9 ≠ 5 |
4 | tsetndx 17318 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
5 | scandx 17280 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
6 | 4, 5 | neeq12i 3002 | . . 3 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5) |
7 | 3, 6 | mpbir 230 | . 2 ⊢ (TopSet‘ndx) ≠ (Scalar‘ndx) |
8 | 6re 12318 | . . . 4 ⊢ 6 ∈ ℝ | |
9 | 6lt9 12429 | . . . 4 ⊢ 6 < 9 | |
10 | 8, 9 | gtneii 11342 | . . 3 ⊢ 9 ≠ 6 |
11 | vscandx 17285 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
12 | 4, 11 | neeq12i 3002 | . . 3 ⊢ ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6) |
13 | 10, 12 | mpbir 230 | . 2 ⊢ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) |
14 | 8re 12324 | . . . 4 ⊢ 8 ∈ ℝ | |
15 | 8lt9 12427 | . . . 4 ⊢ 8 < 9 | |
16 | 14, 15 | gtneii 11342 | . . 3 ⊢ 9 ≠ 8 |
17 | ipndx 17296 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
18 | 4, 17 | neeq12i 3002 | . . 3 ⊢ ((TopSet‘ndx) ≠ (·𝑖‘ndx) ↔ 9 ≠ 8) |
19 | 16, 18 | mpbir 230 | . 2 ⊢ (TopSet‘ndx) ≠ (·𝑖‘ndx) |
20 | 7, 13, 19 | 3pm3.2i 1337 | 1 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 ≠ wne 2935 ‘cfv 6542 5c5 12286 6c6 12287 8c8 12289 9c9 12290 ndxcnx 17147 Scalarcsca 17221 ·𝑠 cvsca 17222 ·𝑖cip 17223 TopSetcts 17224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-slot 17136 df-ndx 17148 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 |
This theorem is referenced by: sratset 21056 tngsca 24532 tngvsca 24534 tngip 24536 zlmtset 33488 |
Copyright terms: Public domain | W3C validator |