![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdnscsi | Structured version Visualization version GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21063 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 12327 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 1nn 12251 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 12517 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 12520 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 12840 | . . . . 5 ⊢ 5 < ;10 | |
6 | 2, 3, 4, 5 | declti 12743 | . . . 4 ⊢ 5 < ;12 |
7 | 1, 6 | gtneii 11354 | . . 3 ⊢ ;12 ≠ 5 |
8 | dsndx 17363 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
9 | scandx 17292 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
10 | 8, 9 | neeq12i 2997 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
11 | 7, 10 | mpbir 230 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
12 | 6re 12330 | . . . 4 ⊢ 6 ∈ ℝ | |
13 | 6nn0 12521 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 12839 | . . . . 5 ⊢ 6 < ;10 | |
15 | 2, 3, 13, 14 | declti 12743 | . . . 4 ⊢ 6 < ;12 |
16 | 12, 15 | gtneii 11354 | . . 3 ⊢ ;12 ≠ 6 |
17 | vscandx 17297 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 8, 17 | neeq12i 2997 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
19 | 16, 18 | mpbir 230 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
20 | 8re 12336 | . . . 4 ⊢ 8 ∈ ℝ | |
21 | 8nn0 12523 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 12837 | . . . . 5 ⊢ 8 < ;10 | |
23 | 2, 3, 21, 22 | declti 12743 | . . . 4 ⊢ 8 < ;12 |
24 | 20, 23 | gtneii 11354 | . . 3 ⊢ ;12 ≠ 8 |
25 | ipndx 17308 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
26 | 8, 25 | neeq12i 2997 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
27 | 24, 26 | mpbir 230 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
28 | 11, 19, 27 | 3pm3.2i 1336 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 ≠ wne 2930 ‘cfv 6542 1c1 11137 2c2 12295 5c5 12298 6c6 12299 8c8 12301 ;cdc 12705 ndxcnx 17159 Scalarcsca 17233 ·𝑠 cvsca 17234 ·𝑖cip 17235 distcds 17239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-slot 17148 df-ndx 17160 df-sca 17246 df-vsca 17247 df-ip 17248 df-ds 17252 |
This theorem is referenced by: srads 21079 tngsca 24574 tngvsca 24576 tngip 24578 zlmds 33619 |
Copyright terms: Public domain | W3C validator |