| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdnscsi | Structured version Visualization version GIF version | ||
| Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21139 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12332 | . . . 4 ⊢ 5 ∈ ℝ | |
| 2 | 1nn 12256 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 3 | 2nn0 12523 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 4 | 5nn0 12526 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 5 | 5lt10 12848 | . . . . 5 ⊢ 5 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12751 | . . . 4 ⊢ 5 < ;12 |
| 7 | 1, 6 | gtneii 11352 | . . 3 ⊢ ;12 ≠ 5 |
| 8 | dsndx 17404 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
| 9 | scandx 17333 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 10 | 8, 9 | neeq12i 2999 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
| 11 | 7, 10 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
| 12 | 6re 12335 | . . . 4 ⊢ 6 ∈ ℝ | |
| 13 | 6nn0 12527 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 14 | 6lt10 12847 | . . . . 5 ⊢ 6 < ;10 | |
| 15 | 2, 3, 13, 14 | declti 12751 | . . . 4 ⊢ 6 < ;12 |
| 16 | 12, 15 | gtneii 11352 | . . 3 ⊢ ;12 ≠ 6 |
| 17 | vscandx 17338 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 18 | 8, 17 | neeq12i 2999 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
| 19 | 16, 18 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 20 | 8re 12341 | . . . 4 ⊢ 8 ∈ ℝ | |
| 21 | 8nn0 12529 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 22 | 8lt10 12845 | . . . . 5 ⊢ 8 < ;10 | |
| 23 | 2, 3, 21, 22 | declti 12751 | . . . 4 ⊢ 8 < ;12 |
| 24 | 20, 23 | gtneii 11352 | . . 3 ⊢ ;12 ≠ 8 |
| 25 | ipndx 17349 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 26 | 8, 25 | neeq12i 2999 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
| 27 | 24, 26 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
| 28 | 11, 19, 27 | 3pm3.2i 1340 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ≠ wne 2933 ‘cfv 6536 1c1 11135 2c2 12300 5c5 12303 6c6 12304 8c8 12306 ;cdc 12713 ndxcnx 17217 Scalarcsca 17279 ·𝑠 cvsca 17280 ·𝑖cip 17281 distcds 17285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-slot 17206 df-ndx 17218 df-sca 17292 df-vsca 17293 df-ip 17294 df-ds 17298 |
| This theorem is referenced by: srads 21148 tngsca 24589 tngvsca 24590 tngip 24591 zlmds 33998 |
| Copyright terms: Public domain | W3C validator |