| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdnscsi | Structured version Visualization version GIF version | ||
| Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21116 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12218 | . . . 4 ⊢ 5 ∈ ℝ | |
| 2 | 1nn 12142 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 3 | 2nn0 12404 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 4 | 5nn0 12407 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 5 | 5lt10 12729 | . . . . 5 ⊢ 5 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 12632 | . . . 4 ⊢ 5 < ;12 |
| 7 | 1, 6 | gtneii 11231 | . . 3 ⊢ ;12 ≠ 5 |
| 8 | dsndx 17295 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
| 9 | scandx 17224 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 10 | 8, 9 | neeq12i 2994 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
| 11 | 7, 10 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
| 12 | 6re 12221 | . . . 4 ⊢ 6 ∈ ℝ | |
| 13 | 6nn0 12408 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 14 | 6lt10 12728 | . . . . 5 ⊢ 6 < ;10 | |
| 15 | 2, 3, 13, 14 | declti 12632 | . . . 4 ⊢ 6 < ;12 |
| 16 | 12, 15 | gtneii 11231 | . . 3 ⊢ ;12 ≠ 6 |
| 17 | vscandx 17229 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 18 | 8, 17 | neeq12i 2994 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
| 19 | 16, 18 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 20 | 8re 12227 | . . . 4 ⊢ 8 ∈ ℝ | |
| 21 | 8nn0 12410 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 22 | 8lt10 12726 | . . . . 5 ⊢ 8 < ;10 | |
| 23 | 2, 3, 21, 22 | declti 12632 | . . . 4 ⊢ 8 < ;12 |
| 24 | 20, 23 | gtneii 11231 | . . 3 ⊢ ;12 ≠ 8 |
| 25 | ipndx 17240 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 26 | 8, 25 | neeq12i 2994 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
| 27 | 24, 26 | mpbir 231 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
| 28 | 11, 19, 27 | 3pm3.2i 1340 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ≠ wne 2928 ‘cfv 6487 1c1 11013 2c2 12186 5c5 12189 6c6 12190 8c8 12192 ;cdc 12594 ndxcnx 17110 Scalarcsca 17170 ·𝑠 cvsca 17171 ·𝑖cip 17172 distcds 17176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-slot 17099 df-ndx 17111 df-sca 17183 df-vsca 17184 df-ip 17185 df-ds 17189 |
| This theorem is referenced by: srads 21125 tngsca 24566 tngvsca 24567 tngip 24568 zlmds 33982 |
| Copyright terms: Public domain | W3C validator |