MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Structured version   Visualization version   GIF version

Theorem chebbnd1lem2 27438
Description: Lemma for chebbnd1 27440: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 13018 . . . . 5 2 ∈ ℝ+
2 4nn 12328 . . . . . . 7 4 ∈ ℕ
3 4z 12631 . . . . . . . . 9 4 ∈ ℤ
43a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
5 chebbnd1lem2.1 . . . . . . . . 9 𝑀 = (⌊‘(𝑁 / 2))
6 rehalfcl 12473 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
76adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
87flcld 13820 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
95, 8eqeltrid 2839 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
10 4t2e8 12413 . . . . . . . . . . . 12 (4 · 2) = 8
11 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
1210, 11eqbrtrid 5159 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
13 4re 12329 . . . . . . . . . . . . 13 4 ∈ ℝ
1413a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
16 2re 12319 . . . . . . . . . . . . 13 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 2pos 12348 . . . . . . . . . . . . 13 0 < 2
1918a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
20 lemuldiv 12127 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2114, 15, 17, 19, 20syl112anc 1376 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2212, 21mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
23 flge 13827 . . . . . . . . . . 11 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
247, 3, 23sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
2522, 24mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
2625, 5breqtrrdi 5166 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
27 eluz2 12863 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
284, 9, 26, 27syl3anbrc 1344 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
29 eluznn 12939 . . . . . . 7 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
302, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
3130nnrpd 13054 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
32 rpmulcl 13037 . . . . 5 ((2 ∈ ℝ+𝑀 ∈ ℝ+) → (2 · 𝑀) ∈ ℝ+)
331, 31, 32sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
3433relogcld 26589 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
3534, 33rerpdivcld 13087 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
36 0red 11243 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
37 8re 12341 . . . . . . . 8 8 ∈ ℝ
3837a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
39 8pos 12357 . . . . . . . 8 0 < 8
4039a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
4136, 38, 15, 40, 11ltletrd 11400 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
4215, 41elrpd 13053 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
4342rphalfcld 13068 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ+)
4443relogcld 26589 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) ∈ ℝ)
4544, 43rerpdivcld 13087 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
4642relogcld 26589 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
4746, 42rerpdivcld 13087 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
48 remulcl 11219 . . 3 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
4916, 47, 48sylancr 587 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
509zred 12702 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
51 peano2re 11413 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5250, 51syl 17 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ∈ ℝ)
53 remulcl 11219 . . . . 5 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
5416, 50, 53sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
55 flltp1 13822 . . . . . 6 ((𝑁 / 2) ∈ ℝ → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
567, 55syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
575oveq1i 7420 . . . . 5 (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1)
5856, 57breqtrrdi 5166 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (𝑀 + 1))
59 1red 11241 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
6030nnge1d 12293 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
6159, 50, 50, 60leadd2dd 11857 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀))
6250recnd 11268 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
63622timesd 12489 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) = (𝑀 + 𝑀))
6461, 63breqtrrd 5152 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (2 · 𝑀))
657, 52, 54, 58, 64ltletrd 11400 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (2 · 𝑀))
66 ere 16110 . . . . . 6 e ∈ ℝ
6766a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
68 egt2lt3 16229 . . . . . . . . 9 (2 < e ∧ e < 3)
6968simpri 485 . . . . . . . 8 e < 3
70 3lt4 12419 . . . . . . . 8 3 < 4
71 3re 12325 . . . . . . . . 9 3 ∈ ℝ
7266, 71, 13lttri 11366 . . . . . . . 8 ((e < 3 ∧ 3 < 4) → e < 4)
7369, 70, 72mp2an 692 . . . . . . 7 e < 4
7473a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
7567, 14, 7, 74, 22ltletrd 11400 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (𝑁 / 2))
7667, 7, 75ltled 11388 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (𝑁 / 2))
7767, 7, 54, 75, 65lttrd 11401 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (2 · 𝑀))
7867, 54, 77ltled 11388 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (2 · 𝑀))
79 logdivlt 26587 . . . 4 ((((𝑁 / 2) ∈ ℝ ∧ e ≤ (𝑁 / 2)) ∧ ((2 · 𝑀) ∈ ℝ ∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
807, 76, 54, 78, 79syl22anc 838 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
8165, 80mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 rphalflt 13043 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑁 / 2) < 𝑁)
8342, 82syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < 𝑁)
84 logltb 26566 . . . . . 6 (((𝑁 / 2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8543, 42, 84syl2anc 584 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8683, 85mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁))
8744, 46, 43, 86ltdiv1dd 13113 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < ((log‘𝑁) / (𝑁 / 2)))
8846recnd 11268 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℂ)
8915recnd 11268 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℂ)
9017recnd 11268 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
9142rpne0d 13061 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ≠ 0)
92 2ne0 12349 . . . . . 6 2 ≠ 0
9392a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
9488, 89, 90, 91, 93divdiv2d 12054 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁))
9588, 90mulcomd 11261 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) · 2) = (2 · (log‘𝑁)))
9695oveq1d 7425 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑁) · 2) / 𝑁) = ((2 · (log‘𝑁)) / 𝑁))
9790, 88, 89, 91divassd 12057 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · (log‘𝑁)) / 𝑁) = (2 · ((log‘𝑁) / 𝑁)))
9894, 96, 973eqtrd 2775 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁)))
9987, 98breqtrd 5150 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < (2 · ((log‘𝑁) / 𝑁)))
10035, 45, 49, 81, 99lttrd 11401 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  4c4 12302  8c8 12306  cz 12593  cuz 12857  +crp 13013  cfl 13812  eceu 16083  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  chebbnd1lem3  27439
  Copyright terms: Public domain W3C validator