Proof of Theorem chebbnd1lem2
Step | Hyp | Ref
| Expression |
1 | | 2rp 12735 |
. . . . 5
⊢ 2 ∈
ℝ+ |
2 | | 4nn 12056 |
. . . . . . 7
⊢ 4 ∈
ℕ |
3 | | 4z 12354 |
. . . . . . . . 9
⊢ 4 ∈
ℤ |
4 | 3 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 4 ∈
ℤ) |
5 | | chebbnd1lem2.1 |
. . . . . . . . 9
⊢ 𝑀 = (⌊‘(𝑁 / 2)) |
6 | | rehalfcl 12199 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈
ℝ) |
7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) ∈
ℝ) |
8 | 7 | flcld 13518 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) →
(⌊‘(𝑁 / 2))
∈ ℤ) |
9 | 5, 8 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈ ℤ) |
10 | | 4t2e8 12141 |
. . . . . . . . . . . 12
⊢ (4
· 2) = 8 |
11 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 8 ≤ 𝑁) |
12 | 10, 11 | eqbrtrid 5109 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (4 · 2)
≤ 𝑁) |
13 | | 4re 12057 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
14 | 13 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 4 ∈
ℝ) |
15 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑁 ∈ ℝ) |
16 | | 2re 12047 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 2 ∈
ℝ) |
18 | | 2pos 12076 |
. . . . . . . . . . . . 13
⊢ 0 <
2 |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 0 <
2) |
20 | | lemuldiv 11855 |
. . . . . . . . . . . 12
⊢ ((4
∈ ℝ ∧ 𝑁
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2)
≤ 𝑁 ↔ 4 ≤ (𝑁 / 2))) |
21 | 14, 15, 17, 19, 20 | syl112anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((4 · 2)
≤ 𝑁 ↔ 4 ≤ (𝑁 / 2))) |
22 | 12, 21 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 4 ≤ (𝑁 / 2)) |
23 | | flge 13525 |
. . . . . . . . . . 11
⊢ (((𝑁 / 2) ∈ ℝ ∧ 4
∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2)))) |
24 | 7, 3, 23 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤
(⌊‘(𝑁 /
2)))) |
25 | 22, 24 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 4 ≤
(⌊‘(𝑁 /
2))) |
26 | 25, 5 | breqtrrdi 5116 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 4 ≤ 𝑀) |
27 | | eluz2 12588 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤
𝑀)) |
28 | 4, 9, 26, 27 | syl3anbrc 1342 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈
(ℤ≥‘4)) |
29 | | eluznn 12658 |
. . . . . . 7
⊢ ((4
∈ ℕ ∧ 𝑀
∈ (ℤ≥‘4)) → 𝑀 ∈ ℕ) |
30 | 2, 28, 29 | sylancr 587 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈ ℕ) |
31 | 30 | nnrpd 12770 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈
ℝ+) |
32 | | rpmulcl 12753 |
. . . . 5
⊢ ((2
∈ ℝ+ ∧ 𝑀 ∈ ℝ+) → (2
· 𝑀) ∈
ℝ+) |
33 | 1, 31, 32 | sylancr 587 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (2 · 𝑀) ∈
ℝ+) |
34 | 33 | relogcld 25778 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (log‘(2
· 𝑀)) ∈
ℝ) |
35 | 34, 33 | rerpdivcld 12803 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘(2
· 𝑀)) / (2 ·
𝑀)) ∈
ℝ) |
36 | | 0red 10978 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 0 ∈
ℝ) |
37 | | 8re 12069 |
. . . . . . . 8
⊢ 8 ∈
ℝ |
38 | 37 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 8 ∈
ℝ) |
39 | | 8pos 12085 |
. . . . . . . 8
⊢ 0 <
8 |
40 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 0 <
8) |
41 | 36, 38, 15, 40, 11 | ltletrd 11135 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 0 < 𝑁) |
42 | 15, 41 | elrpd 12769 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑁 ∈
ℝ+) |
43 | 42 | rphalfcld 12784 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) ∈
ℝ+) |
44 | 43 | relogcld 25778 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (log‘(𝑁 / 2)) ∈
ℝ) |
45 | 44, 43 | rerpdivcld 12803 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) →
((log‘(𝑁 / 2)) /
(𝑁 / 2)) ∈
ℝ) |
46 | 42 | relogcld 25778 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (log‘𝑁) ∈
ℝ) |
47 | 46, 42 | rerpdivcld 12803 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ) |
48 | | remulcl 10956 |
. . 3
⊢ ((2
∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 ·
((log‘𝑁) / 𝑁)) ∈
ℝ) |
49 | 16, 47, 48 | sylancr 587 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (2 ·
((log‘𝑁) / 𝑁)) ∈
ℝ) |
50 | 9 | zred 12426 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈ ℝ) |
51 | | peano2re 11148 |
. . . . 5
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
52 | 50, 51 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑀 + 1) ∈
ℝ) |
53 | | remulcl 10956 |
. . . . 5
⊢ ((2
∈ ℝ ∧ 𝑀
∈ ℝ) → (2 · 𝑀) ∈ ℝ) |
54 | 16, 50, 53 | sylancr 587 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (2 · 𝑀) ∈
ℝ) |
55 | | flltp1 13520 |
. . . . . 6
⊢ ((𝑁 / 2) ∈ ℝ →
(𝑁 / 2) <
((⌊‘(𝑁 / 2)) +
1)) |
56 | 7, 55 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) <
((⌊‘(𝑁 / 2)) +
1)) |
57 | 5 | oveq1i 7285 |
. . . . 5
⊢ (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1) |
58 | 56, 57 | breqtrrdi 5116 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) < (𝑀 + 1)) |
59 | | 1red 10976 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 1 ∈
ℝ) |
60 | 30 | nnge1d 12021 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 1 ≤ 𝑀) |
61 | 59, 50, 50, 60 | leadd2dd 11590 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀)) |
62 | 50 | recnd 11003 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑀 ∈ ℂ) |
63 | 62 | 2timesd 12216 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (2 · 𝑀) = (𝑀 + 𝑀)) |
64 | 61, 63 | breqtrrd 5102 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑀 + 1) ≤ (2 · 𝑀)) |
65 | 7, 52, 54, 58, 64 | ltletrd 11135 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) < (2 · 𝑀)) |
66 | | ere 15798 |
. . . . . 6
⊢ e ∈
ℝ |
67 | 66 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e ∈
ℝ) |
68 | | egt2lt3 15915 |
. . . . . . . . 9
⊢ (2 < e
∧ e < 3) |
69 | 68 | simpri 486 |
. . . . . . . 8
⊢ e <
3 |
70 | | 3lt4 12147 |
. . . . . . . 8
⊢ 3 <
4 |
71 | | 3re 12053 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
72 | 66, 71, 13 | lttri 11101 |
. . . . . . . 8
⊢ ((e <
3 ∧ 3 < 4) → e < 4) |
73 | 69, 70, 72 | mp2an 689 |
. . . . . . 7
⊢ e <
4 |
74 | 73 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e <
4) |
75 | 67, 14, 7, 74, 22 | ltletrd 11135 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e < (𝑁 / 2)) |
76 | 67, 7, 75 | ltled 11123 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e ≤ (𝑁 / 2)) |
77 | 67, 7, 54, 75, 65 | lttrd 11136 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e < (2
· 𝑀)) |
78 | 67, 54, 77 | ltled 11123 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → e ≤ (2
· 𝑀)) |
79 | | logdivlt 25776 |
. . . 4
⊢ ((((𝑁 / 2) ∈ ℝ ∧ e
≤ (𝑁 / 2)) ∧ ((2
· 𝑀) ∈ ℝ
∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))) |
80 | 7, 76, 54, 78, 79 | syl22anc 836 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 ·
𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))) |
81 | 65, 80 | mpbid 231 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘(2
· 𝑀)) / (2 ·
𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))) |
82 | | rphalflt 12759 |
. . . . . 6
⊢ (𝑁 ∈ ℝ+
→ (𝑁 / 2) < 𝑁) |
83 | 42, 82 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (𝑁 / 2) < 𝑁) |
84 | | logltb 25755 |
. . . . . 6
⊢ (((𝑁 / 2) ∈ ℝ+
∧ 𝑁 ∈
ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁))) |
85 | 43, 42, 84 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁))) |
86 | 83, 85 | mpbid 231 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁)) |
87 | 44, 46, 43, 86 | ltdiv1dd 12829 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) →
((log‘(𝑁 / 2)) /
(𝑁 / 2)) <
((log‘𝑁) / (𝑁 / 2))) |
88 | 46 | recnd 11003 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → (log‘𝑁) ∈
ℂ) |
89 | 15 | recnd 11003 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑁 ∈ ℂ) |
90 | 17 | recnd 11003 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 2 ∈
ℂ) |
91 | 42 | rpne0d 12777 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 𝑁 ≠ 0) |
92 | | 2ne0 12077 |
. . . . . 6
⊢ 2 ≠
0 |
93 | 92 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → 2 ≠
0) |
94 | 88, 89, 90, 91, 93 | divdiv2d 11783 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁)) |
95 | 88, 90 | mulcomd 10996 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘𝑁) · 2) = (2 ·
(log‘𝑁))) |
96 | 95 | oveq1d 7290 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) →
(((log‘𝑁) · 2)
/ 𝑁) = ((2 ·
(log‘𝑁)) / 𝑁)) |
97 | 90, 88, 89, 91 | divassd 11786 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((2 ·
(log‘𝑁)) / 𝑁) = (2 ·
((log‘𝑁) / 𝑁))) |
98 | 94, 96, 97 | 3eqtrd 2782 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁))) |
99 | 87, 98 | breqtrd 5100 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) →
((log‘(𝑁 / 2)) /
(𝑁 / 2)) < (2 ·
((log‘𝑁) / 𝑁))) |
100 | 35, 45, 49, 81, 99 | lttrd 11136 |
1
⊢ ((𝑁 ∈ ℝ ∧ 8 ≤
𝑁) → ((log‘(2
· 𝑀)) / (2 ·
𝑀)) < (2 ·
((log‘𝑁) / 𝑁))) |