MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Structured version   Visualization version   GIF version

Theorem chebbnd1lem2 26046
Description: Lemma for chebbnd1 26048: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 12395 . . . . 5 2 ∈ ℝ+
2 4nn 11721 . . . . . . 7 4 ∈ ℕ
3 4z 12017 . . . . . . . . 9 4 ∈ ℤ
43a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
5 chebbnd1lem2.1 . . . . . . . . 9 𝑀 = (⌊‘(𝑁 / 2))
6 rehalfcl 11864 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
76adantr 483 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
87flcld 13169 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
95, 8eqeltrid 2917 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
10 4t2e8 11806 . . . . . . . . . . . 12 (4 · 2) = 8
11 simpr 487 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
1210, 11eqbrtrid 5101 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
13 4re 11722 . . . . . . . . . . . . 13 4 ∈ ℝ
1413a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
15 simpl 485 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
16 2re 11712 . . . . . . . . . . . . 13 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 2pos 11741 . . . . . . . . . . . . 13 0 < 2
1918a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
20 lemuldiv 11520 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2114, 15, 17, 19, 20syl112anc 1370 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2212, 21mpbid 234 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
23 flge 13176 . . . . . . . . . . 11 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
247, 3, 23sylancl 588 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
2522, 24mpbid 234 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
2625, 5breqtrrdi 5108 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
27 eluz2 12250 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
284, 9, 26, 27syl3anbrc 1339 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
29 eluznn 12319 . . . . . . 7 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
302, 28, 29sylancr 589 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
3130nnrpd 12430 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
32 rpmulcl 12413 . . . . 5 ((2 ∈ ℝ+𝑀 ∈ ℝ+) → (2 · 𝑀) ∈ ℝ+)
331, 31, 32sylancr 589 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
3433relogcld 25206 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
3534, 33rerpdivcld 12463 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
36 0red 10644 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
37 8re 11734 . . . . . . . 8 8 ∈ ℝ
3837a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
39 8pos 11750 . . . . . . . 8 0 < 8
4039a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
4136, 38, 15, 40, 11ltletrd 10800 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
4215, 41elrpd 12429 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
4342rphalfcld 12444 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ+)
4443relogcld 25206 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) ∈ ℝ)
4544, 43rerpdivcld 12463 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
4642relogcld 25206 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
4746, 42rerpdivcld 12463 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
48 remulcl 10622 . . 3 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
4916, 47, 48sylancr 589 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
509zred 12088 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
51 peano2re 10813 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5250, 51syl 17 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ∈ ℝ)
53 remulcl 10622 . . . . 5 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
5416, 50, 53sylancr 589 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
55 flltp1 13171 . . . . . 6 ((𝑁 / 2) ∈ ℝ → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
567, 55syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
575oveq1i 7166 . . . . 5 (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1)
5856, 57breqtrrdi 5108 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (𝑀 + 1))
59 1red 10642 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
6030nnge1d 11686 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
6159, 50, 50, 60leadd2dd 11255 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀))
6250recnd 10669 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
63622timesd 11881 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) = (𝑀 + 𝑀))
6461, 63breqtrrd 5094 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (2 · 𝑀))
657, 52, 54, 58, 64ltletrd 10800 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (2 · 𝑀))
66 ere 15442 . . . . . 6 e ∈ ℝ
6766a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
68 egt2lt3 15559 . . . . . . . . 9 (2 < e ∧ e < 3)
6968simpri 488 . . . . . . . 8 e < 3
70 3lt4 11812 . . . . . . . 8 3 < 4
71 3re 11718 . . . . . . . . 9 3 ∈ ℝ
7266, 71, 13lttri 10766 . . . . . . . 8 ((e < 3 ∧ 3 < 4) → e < 4)
7369, 70, 72mp2an 690 . . . . . . 7 e < 4
7473a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
7567, 14, 7, 74, 22ltletrd 10800 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (𝑁 / 2))
7667, 7, 75ltled 10788 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (𝑁 / 2))
7767, 7, 54, 75, 65lttrd 10801 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (2 · 𝑀))
7867, 54, 77ltled 10788 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (2 · 𝑀))
79 logdivlt 25204 . . . 4 ((((𝑁 / 2) ∈ ℝ ∧ e ≤ (𝑁 / 2)) ∧ ((2 · 𝑀) ∈ ℝ ∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
807, 76, 54, 78, 79syl22anc 836 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
8165, 80mpbid 234 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 rphalflt 12419 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑁 / 2) < 𝑁)
8342, 82syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < 𝑁)
84 logltb 25183 . . . . . 6 (((𝑁 / 2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8543, 42, 84syl2anc 586 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8683, 85mpbid 234 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁))
8744, 46, 43, 86ltdiv1dd 12489 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < ((log‘𝑁) / (𝑁 / 2)))
8846recnd 10669 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℂ)
8915recnd 10669 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℂ)
9017recnd 10669 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
9142rpne0d 12437 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ≠ 0)
92 2ne0 11742 . . . . . 6 2 ≠ 0
9392a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
9488, 89, 90, 91, 93divdiv2d 11448 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁))
9588, 90mulcomd 10662 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) · 2) = (2 · (log‘𝑁)))
9695oveq1d 7171 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑁) · 2) / 𝑁) = ((2 · (log‘𝑁)) / 𝑁))
9790, 88, 89, 91divassd 11451 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · (log‘𝑁)) / 𝑁) = (2 · ((log‘𝑁) / 𝑁)))
9894, 96, 973eqtrd 2860 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁)))
9987, 98breqtrd 5092 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < (2 · ((log‘𝑁) / 𝑁)))
10035, 45, 49, 81, 99lttrd 10801 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  8c8 11699  cz 11982  cuz 12244  +crp 12390  cfl 13161  eceu 15416  logclog 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140
This theorem is referenced by:  chebbnd1lem3  26047
  Copyright terms: Public domain W3C validator