MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Structured version   Visualization version   GIF version

Theorem chebbnd1lem2 27515
Description: Lemma for chebbnd1 27517: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 13040 . . . . 5 2 ∈ ℝ+
2 4nn 12350 . . . . . . 7 4 ∈ ℕ
3 4z 12653 . . . . . . . . 9 4 ∈ ℤ
43a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
5 chebbnd1lem2.1 . . . . . . . . 9 𝑀 = (⌊‘(𝑁 / 2))
6 rehalfcl 12495 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
76adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
87flcld 13839 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
95, 8eqeltrid 2844 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
10 4t2e8 12435 . . . . . . . . . . . 12 (4 · 2) = 8
11 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
1210, 11eqbrtrid 5177 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
13 4re 12351 . . . . . . . . . . . . 13 4 ∈ ℝ
1413a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
16 2re 12341 . . . . . . . . . . . . 13 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 2pos 12370 . . . . . . . . . . . . 13 0 < 2
1918a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
20 lemuldiv 12149 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2114, 15, 17, 19, 20syl112anc 1375 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2212, 21mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
23 flge 13846 . . . . . . . . . . 11 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
247, 3, 23sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
2522, 24mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
2625, 5breqtrrdi 5184 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
27 eluz2 12885 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
284, 9, 26, 27syl3anbrc 1343 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
29 eluznn 12961 . . . . . . 7 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
302, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
3130nnrpd 13076 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
32 rpmulcl 13059 . . . . 5 ((2 ∈ ℝ+𝑀 ∈ ℝ+) → (2 · 𝑀) ∈ ℝ+)
331, 31, 32sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
3433relogcld 26666 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
3534, 33rerpdivcld 13109 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
36 0red 11265 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
37 8re 12363 . . . . . . . 8 8 ∈ ℝ
3837a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
39 8pos 12379 . . . . . . . 8 0 < 8
4039a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
4136, 38, 15, 40, 11ltletrd 11422 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
4215, 41elrpd 13075 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
4342rphalfcld 13090 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ+)
4443relogcld 26666 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) ∈ ℝ)
4544, 43rerpdivcld 13109 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
4642relogcld 26666 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
4746, 42rerpdivcld 13109 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
48 remulcl 11241 . . 3 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
4916, 47, 48sylancr 587 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
509zred 12724 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
51 peano2re 11435 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5250, 51syl 17 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ∈ ℝ)
53 remulcl 11241 . . . . 5 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
5416, 50, 53sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
55 flltp1 13841 . . . . . 6 ((𝑁 / 2) ∈ ℝ → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
567, 55syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
575oveq1i 7442 . . . . 5 (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1)
5856, 57breqtrrdi 5184 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (𝑀 + 1))
59 1red 11263 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
6030nnge1d 12315 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
6159, 50, 50, 60leadd2dd 11879 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀))
6250recnd 11290 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
63622timesd 12511 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) = (𝑀 + 𝑀))
6461, 63breqtrrd 5170 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (2 · 𝑀))
657, 52, 54, 58, 64ltletrd 11422 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (2 · 𝑀))
66 ere 16126 . . . . . 6 e ∈ ℝ
6766a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
68 egt2lt3 16243 . . . . . . . . 9 (2 < e ∧ e < 3)
6968simpri 485 . . . . . . . 8 e < 3
70 3lt4 12441 . . . . . . . 8 3 < 4
71 3re 12347 . . . . . . . . 9 3 ∈ ℝ
7266, 71, 13lttri 11388 . . . . . . . 8 ((e < 3 ∧ 3 < 4) → e < 4)
7369, 70, 72mp2an 692 . . . . . . 7 e < 4
7473a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
7567, 14, 7, 74, 22ltletrd 11422 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (𝑁 / 2))
7667, 7, 75ltled 11410 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (𝑁 / 2))
7767, 7, 54, 75, 65lttrd 11423 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (2 · 𝑀))
7867, 54, 77ltled 11410 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (2 · 𝑀))
79 logdivlt 26664 . . . 4 ((((𝑁 / 2) ∈ ℝ ∧ e ≤ (𝑁 / 2)) ∧ ((2 · 𝑀) ∈ ℝ ∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
807, 76, 54, 78, 79syl22anc 838 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
8165, 80mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 rphalflt 13065 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑁 / 2) < 𝑁)
8342, 82syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < 𝑁)
84 logltb 26643 . . . . . 6 (((𝑁 / 2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8543, 42, 84syl2anc 584 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8683, 85mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁))
8744, 46, 43, 86ltdiv1dd 13135 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < ((log‘𝑁) / (𝑁 / 2)))
8846recnd 11290 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℂ)
8915recnd 11290 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℂ)
9017recnd 11290 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
9142rpne0d 13083 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ≠ 0)
92 2ne0 12371 . . . . . 6 2 ≠ 0
9392a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
9488, 89, 90, 91, 93divdiv2d 12076 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁))
9588, 90mulcomd 11283 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) · 2) = (2 · (log‘𝑁)))
9695oveq1d 7447 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑁) · 2) / 𝑁) = ((2 · (log‘𝑁)) / 𝑁))
9790, 88, 89, 91divassd 12079 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · (log‘𝑁)) / 𝑁) = (2 · ((log‘𝑁) / 𝑁)))
9894, 96, 973eqtrd 2780 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁)))
9987, 98breqtrd 5168 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < (2 · ((log‘𝑁) / 𝑁)))
10035, 45, 49, 81, 99lttrd 11423 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297   / cdiv 11921  cn 12267  2c2 12322  3c3 12323  4c4 12324  8c8 12328  cz 12615  cuz 12879  +crp 13035  cfl 13831  eceu 16099  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-e 16105  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  chebbnd1lem3  27516
  Copyright terms: Public domain W3C validator