MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Structured version   Visualization version   GIF version

Theorem chebbnd1lem2 27532
Description: Lemma for chebbnd1 27534: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 13062 . . . . 5 2 ∈ ℝ+
2 4nn 12376 . . . . . . 7 4 ∈ ℕ
3 4z 12677 . . . . . . . . 9 4 ∈ ℤ
43a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
5 chebbnd1lem2.1 . . . . . . . . 9 𝑀 = (⌊‘(𝑁 / 2))
6 rehalfcl 12519 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
76adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
87flcld 13849 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
95, 8eqeltrid 2848 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
10 4t2e8 12461 . . . . . . . . . . . 12 (4 · 2) = 8
11 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
1210, 11eqbrtrid 5201 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
13 4re 12377 . . . . . . . . . . . . 13 4 ∈ ℝ
1413a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
16 2re 12367 . . . . . . . . . . . . 13 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 2pos 12396 . . . . . . . . . . . . 13 0 < 2
1918a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
20 lemuldiv 12175 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2114, 15, 17, 19, 20syl112anc 1374 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2212, 21mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
23 flge 13856 . . . . . . . . . . 11 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
247, 3, 23sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
2522, 24mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
2625, 5breqtrrdi 5208 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
27 eluz2 12909 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
284, 9, 26, 27syl3anbrc 1343 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
29 eluznn 12983 . . . . . . 7 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
302, 28, 29sylancr 586 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
3130nnrpd 13097 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
32 rpmulcl 13080 . . . . 5 ((2 ∈ ℝ+𝑀 ∈ ℝ+) → (2 · 𝑀) ∈ ℝ+)
331, 31, 32sylancr 586 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
3433relogcld 26683 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
3534, 33rerpdivcld 13130 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
36 0red 11293 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
37 8re 12389 . . . . . . . 8 8 ∈ ℝ
3837a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
39 8pos 12405 . . . . . . . 8 0 < 8
4039a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
4136, 38, 15, 40, 11ltletrd 11450 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
4215, 41elrpd 13096 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
4342rphalfcld 13111 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ+)
4443relogcld 26683 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) ∈ ℝ)
4544, 43rerpdivcld 13130 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
4642relogcld 26683 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
4746, 42rerpdivcld 13130 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
48 remulcl 11269 . . 3 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
4916, 47, 48sylancr 586 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
509zred 12747 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
51 peano2re 11463 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5250, 51syl 17 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ∈ ℝ)
53 remulcl 11269 . . . . 5 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
5416, 50, 53sylancr 586 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
55 flltp1 13851 . . . . . 6 ((𝑁 / 2) ∈ ℝ → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
567, 55syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
575oveq1i 7458 . . . . 5 (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1)
5856, 57breqtrrdi 5208 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (𝑀 + 1))
59 1red 11291 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
6030nnge1d 12341 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
6159, 50, 50, 60leadd2dd 11905 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀))
6250recnd 11318 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
63622timesd 12536 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) = (𝑀 + 𝑀))
6461, 63breqtrrd 5194 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (2 · 𝑀))
657, 52, 54, 58, 64ltletrd 11450 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (2 · 𝑀))
66 ere 16137 . . . . . 6 e ∈ ℝ
6766a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
68 egt2lt3 16254 . . . . . . . . 9 (2 < e ∧ e < 3)
6968simpri 485 . . . . . . . 8 e < 3
70 3lt4 12467 . . . . . . . 8 3 < 4
71 3re 12373 . . . . . . . . 9 3 ∈ ℝ
7266, 71, 13lttri 11416 . . . . . . . 8 ((e < 3 ∧ 3 < 4) → e < 4)
7369, 70, 72mp2an 691 . . . . . . 7 e < 4
7473a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
7567, 14, 7, 74, 22ltletrd 11450 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (𝑁 / 2))
7667, 7, 75ltled 11438 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (𝑁 / 2))
7767, 7, 54, 75, 65lttrd 11451 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (2 · 𝑀))
7867, 54, 77ltled 11438 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (2 · 𝑀))
79 logdivlt 26681 . . . 4 ((((𝑁 / 2) ∈ ℝ ∧ e ≤ (𝑁 / 2)) ∧ ((2 · 𝑀) ∈ ℝ ∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
807, 76, 54, 78, 79syl22anc 838 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
8165, 80mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 rphalflt 13086 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑁 / 2) < 𝑁)
8342, 82syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < 𝑁)
84 logltb 26660 . . . . . 6 (((𝑁 / 2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8543, 42, 84syl2anc 583 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8683, 85mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁))
8744, 46, 43, 86ltdiv1dd 13156 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < ((log‘𝑁) / (𝑁 / 2)))
8846recnd 11318 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℂ)
8915recnd 11318 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℂ)
9017recnd 11318 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
9142rpne0d 13104 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ≠ 0)
92 2ne0 12397 . . . . . 6 2 ≠ 0
9392a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
9488, 89, 90, 91, 93divdiv2d 12102 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁))
9588, 90mulcomd 11311 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) · 2) = (2 · (log‘𝑁)))
9695oveq1d 7463 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑁) · 2) / 𝑁) = ((2 · (log‘𝑁)) / 𝑁))
9790, 88, 89, 91divassd 12105 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · (log‘𝑁)) / 𝑁) = (2 · ((log‘𝑁) / 𝑁)))
9894, 96, 973eqtrd 2784 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁)))
9987, 98breqtrd 5192 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < (2 · ((log‘𝑁) / 𝑁)))
10035, 45, 49, 81, 99lttrd 11451 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  8c8 12354  cz 12639  cuz 12903  +crp 13057  cfl 13841  eceu 16110  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  chebbnd1lem3  27533
  Copyright terms: Public domain W3C validator