MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Structured version   Visualization version   GIF version

Theorem chebbnd1lem2 27403
Description: Lemma for chebbnd1 27405: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 12890 . . . . 5 2 ∈ ℝ+
2 4nn 12203 . . . . . . 7 4 ∈ ℕ
3 4z 12501 . . . . . . . . 9 4 ∈ ℤ
43a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
5 chebbnd1lem2.1 . . . . . . . . 9 𝑀 = (⌊‘(𝑁 / 2))
6 rehalfcl 12343 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
76adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
87flcld 13697 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
95, 8eqeltrid 2835 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
10 4t2e8 12283 . . . . . . . . . . . 12 (4 · 2) = 8
11 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
1210, 11eqbrtrid 5121 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
13 4re 12204 . . . . . . . . . . . . 13 4 ∈ ℝ
1413a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
16 2re 12194 . . . . . . . . . . . . 13 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 2pos 12223 . . . . . . . . . . . . 13 0 < 2
1918a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
20 lemuldiv 11997 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2114, 15, 17, 19, 20syl112anc 1376 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
2212, 21mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
23 flge 13704 . . . . . . . . . . 11 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
247, 3, 23sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
2522, 24mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
2625, 5breqtrrdi 5128 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
27 eluz2 12733 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
284, 9, 26, 27syl3anbrc 1344 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
29 eluznn 12811 . . . . . . 7 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
302, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
3130nnrpd 12927 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
32 rpmulcl 12910 . . . . 5 ((2 ∈ ℝ+𝑀 ∈ ℝ+) → (2 · 𝑀) ∈ ℝ+)
331, 31, 32sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
3433relogcld 26554 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
3534, 33rerpdivcld 12960 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
36 0red 11110 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
37 8re 12216 . . . . . . . 8 8 ∈ ℝ
3837a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
39 8pos 12232 . . . . . . . 8 0 < 8
4039a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
4136, 38, 15, 40, 11ltletrd 11268 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
4215, 41elrpd 12926 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
4342rphalfcld 12941 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ+)
4443relogcld 26554 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) ∈ ℝ)
4544, 43rerpdivcld 12960 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
4642relogcld 26554 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
4746, 42rerpdivcld 12960 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
48 remulcl 11086 . . 3 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
4916, 47, 48sylancr 587 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
509zred 12572 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
51 peano2re 11281 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5250, 51syl 17 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ∈ ℝ)
53 remulcl 11086 . . . . 5 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
5416, 50, 53sylancr 587 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
55 flltp1 13699 . . . . . 6 ((𝑁 / 2) ∈ ℝ → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
567, 55syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < ((⌊‘(𝑁 / 2)) + 1))
575oveq1i 7351 . . . . 5 (𝑀 + 1) = ((⌊‘(𝑁 / 2)) + 1)
5856, 57breqtrrdi 5128 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (𝑀 + 1))
59 1red 11108 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
6030nnge1d 12168 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
6159, 50, 50, 60leadd2dd 11727 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (𝑀 + 𝑀))
6250recnd 11135 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
63622timesd 12359 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) = (𝑀 + 𝑀))
6461, 63breqtrrd 5114 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 + 1) ≤ (2 · 𝑀))
657, 52, 54, 58, 64ltletrd 11268 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < (2 · 𝑀))
66 ere 15991 . . . . . 6 e ∈ ℝ
6766a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
68 egt2lt3 16110 . . . . . . . . 9 (2 < e ∧ e < 3)
6968simpri 485 . . . . . . . 8 e < 3
70 3lt4 12289 . . . . . . . 8 3 < 4
71 3re 12200 . . . . . . . . 9 3 ∈ ℝ
7266, 71, 13lttri 11234 . . . . . . . 8 ((e < 3 ∧ 3 < 4) → e < 4)
7369, 70, 72mp2an 692 . . . . . . 7 e < 4
7473a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
7567, 14, 7, 74, 22ltletrd 11268 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (𝑁 / 2))
7667, 7, 75ltled 11256 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (𝑁 / 2))
7767, 7, 54, 75, 65lttrd 11269 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < (2 · 𝑀))
7867, 54, 77ltled 11256 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ (2 · 𝑀))
79 logdivlt 26552 . . . 4 ((((𝑁 / 2) ∈ ℝ ∧ e ≤ (𝑁 / 2)) ∧ ((2 · 𝑀) ∈ ℝ ∧ e ≤ (2 · 𝑀))) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
807, 76, 54, 78, 79syl22anc 838 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < (2 · 𝑀) ↔ ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2))))
8165, 80mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 rphalflt 12916 . . . . . 6 (𝑁 ∈ ℝ+ → (𝑁 / 2) < 𝑁)
8342, 82syl 17 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) < 𝑁)
84 logltb 26531 . . . . . 6 (((𝑁 / 2) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8543, 42, 84syl2anc 584 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((𝑁 / 2) < 𝑁 ↔ (log‘(𝑁 / 2)) < (log‘𝑁)))
8683, 85mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(𝑁 / 2)) < (log‘𝑁))
8744, 46, 43, 86ltdiv1dd 12986 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < ((log‘𝑁) / (𝑁 / 2)))
8846recnd 11135 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℂ)
8915recnd 11135 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℂ)
9017recnd 11135 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
9142rpne0d 12934 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ≠ 0)
92 2ne0 12224 . . . . . 6 2 ≠ 0
9392a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
9488, 89, 90, 91, 93divdiv2d 11924 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (((log‘𝑁) · 2) / 𝑁))
9588, 90mulcomd 11128 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) · 2) = (2 · (log‘𝑁)))
9695oveq1d 7356 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑁) · 2) / 𝑁) = ((2 · (log‘𝑁)) / 𝑁))
9790, 88, 89, 91divassd 11927 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · (log‘𝑁)) / 𝑁) = (2 · ((log‘𝑁) / 𝑁)))
9894, 96, 973eqtrd 2770 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / (𝑁 / 2)) = (2 · ((log‘𝑁) / 𝑁)))
9987, 98breqtrd 5112 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(𝑁 / 2)) / (𝑁 / 2)) < (2 · ((log‘𝑁) / 𝑁)))
10035, 45, 49, 81, 99lttrd 11269 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142   / cdiv 11769  cn 12120  2c2 12175  3c3 12176  4c4 12177  8c8 12181  cz 12463  cuz 12727  +crp 12885  cfl 13689  eceu 15964  logclog 26485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-e 15970  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487
This theorem is referenced by:  chebbnd1lem3  27404
  Copyright terms: Public domain W3C validator