| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cchhllemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cchhllem 28901 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
| cchhllemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
| cchhllemOLD.3 | ⊢ 𝑁 ∈ ℕ |
| cchhllemOLD.4 | ⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
| Ref | Expression |
|---|---|
| cchhllemOLD | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cchhllemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | cchhllemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17234 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | cchhllemOLD.4 | . . . . 5 ⊢ (𝑁 < 5 ∨ 8 < 𝑁) | |
| 5 | 5lt8 12460 | . . . . . . . . 9 ⊢ 5 < 8 | |
| 6 | 2 | nnrei 12275 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℝ |
| 7 | 5re 12353 | . . . . . . . . . 10 ⊢ 5 ∈ ℝ | |
| 8 | 8re 12362 | . . . . . . . . . 10 ⊢ 8 ∈ ℝ | |
| 9 | 6, 7, 8 | lttri 11387 | . . . . . . . . 9 ⊢ ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8) |
| 10 | 5, 9 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 < 5 → 𝑁 < 8) |
| 11 | 6, 8 | ltnei 11385 | . . . . . . . 8 ⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
| 13 | 12 | necomd 2996 | . . . . . 6 ⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
| 14 | 8, 6 | ltnei 11385 | . . . . . 6 ⊢ (8 < 𝑁 → 𝑁 ≠ 8) |
| 15 | 13, 14 | jaoi 858 | . . . . 5 ⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
| 16 | 4, 15 | ax-mp 5 | . . . 4 ⊢ 𝑁 ≠ 8 |
| 17 | 1, 2 | ndxarg 17233 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
| 18 | ipndx 17374 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
| 19 | 17, 18 | neeq12i 3007 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
| 20 | 16, 19 | mpbir 231 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
| 21 | 3, 20 | setsnid 17245 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
| 22 | eqidd 2738 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
| 23 | ax-resscn 11212 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 24 | cnfldbas 21368 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 25 | 23, 24 | sseqtri 4032 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
| 27 | 22, 26, 1, 2, 4 | sralemOLD 21176 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
| 28 | 27 | mptru 1547 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
| 29 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
| 30 | 29 | fveq2i 6909 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
| 31 | 21, 28, 30 | 3eqtr4i 2775 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 848 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2940 ⊆ wss 3951 〈cop 4632 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 ℝcr 11154 · cmul 11160 < clt 11295 ℕcn 12266 5c5 12324 8c8 12327 ∗ccj 15135 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 Basecbs 17247 ·𝑖cip 17302 subringAlg csra 21170 ℂfldccnfld 21364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-sra 21172 df-cnfld 21365 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |