![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cchhllemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cchhllem 28412 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cchhl.c | β’ πΆ = (((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©) |
cchhllemOLD.2 | β’ πΈ = Slot π |
cchhllemOLD.3 | β’ π β β |
cchhllemOLD.4 | β’ (π < 5 β¨ 8 < π) |
Ref | Expression |
---|---|
cchhllemOLD | β’ (πΈββfld) = (πΈβπΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllemOLD.2 | . . . 4 β’ πΈ = Slot π | |
2 | cchhllemOLD.3 | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17135 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | cchhllemOLD.4 | . . . . 5 β’ (π < 5 β¨ 8 < π) | |
5 | 5lt8 12411 | . . . . . . . . 9 β’ 5 < 8 | |
6 | 2 | nnrei 12226 | . . . . . . . . . 10 β’ π β β |
7 | 5re 12304 | . . . . . . . . . 10 β’ 5 β β | |
8 | 8re 12313 | . . . . . . . . . 10 β’ 8 β β | |
9 | 6, 7, 8 | lttri 11345 | . . . . . . . . 9 β’ ((π < 5 β§ 5 < 8) β π < 8) |
10 | 5, 9 | mpan2 688 | . . . . . . . 8 β’ (π < 5 β π < 8) |
11 | 6, 8 | ltnei 11343 | . . . . . . . 8 β’ (π < 8 β 8 β π) |
12 | 10, 11 | syl 17 | . . . . . . 7 β’ (π < 5 β 8 β π) |
13 | 12 | necomd 2995 | . . . . . 6 β’ (π < 5 β π β 8) |
14 | 8, 6 | ltnei 11343 | . . . . . 6 β’ (8 < π β π β 8) |
15 | 13, 14 | jaoi 854 | . . . . 5 β’ ((π < 5 β¨ 8 < π) β π β 8) |
16 | 4, 15 | ax-mp 5 | . . . 4 β’ π β 8 |
17 | 1, 2 | ndxarg 17134 | . . . . 5 β’ (πΈβndx) = π |
18 | ipndx 17280 | . . . . 5 β’ (Β·πβndx) = 8 | |
19 | 17, 18 | neeq12i 3006 | . . . 4 β’ ((πΈβndx) β (Β·πβndx) β π β 8) |
20 | 16, 19 | mpbir 230 | . . 3 β’ (πΈβndx) β (Β·πβndx) |
21 | 3, 20 | setsnid 17147 | . 2 β’ (πΈβ((subringAlg ββfld)ββ)) = (πΈβ(((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©)) |
22 | eqidd 2732 | . . . 4 β’ (β€ β ((subringAlg ββfld)ββ) = ((subringAlg ββfld)ββ)) | |
23 | ax-resscn 11171 | . . . . . 6 β’ β β β | |
24 | cnfldbas 21149 | . . . . . 6 β’ β = (Baseββfld) | |
25 | 23, 24 | sseqtri 4018 | . . . . 5 β’ β β (Baseββfld) |
26 | 25 | a1i 11 | . . . 4 β’ (β€ β β β (Baseββfld)) |
27 | 22, 26, 1, 2, 4 | sralemOLD 20937 | . . 3 β’ (β€ β (πΈββfld) = (πΈβ((subringAlg ββfld)ββ))) |
28 | 27 | mptru 1547 | . 2 β’ (πΈββfld) = (πΈβ((subringAlg ββfld)ββ)) |
29 | cchhl.c | . . 3 β’ πΆ = (((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©) | |
30 | 29 | fveq2i 6894 | . 2 β’ (πΈβπΆ) = (πΈβ(((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©)) |
31 | 21, 28, 30 | 3eqtr4i 2769 | 1 β’ (πΈββfld) = (πΈβπΆ) |
Colors of variables: wff setvar class |
Syntax hints: β¨ wo 844 = wceq 1540 β€wtru 1541 β wcel 2105 β wne 2939 β wss 3948 β¨cop 4634 class class class wbr 5148 βcfv 6543 (class class class)co 7412 β cmpo 7414 βcc 11112 βcr 11113 Β· cmul 11119 < clt 11253 βcn 12217 5c5 12275 8c8 12278 βccj 15048 sSet csts 17101 Slot cslot 17119 ndxcnx 17131 Basecbs 17149 Β·πcip 17207 subringAlg csra 20927 βfldccnfld 21145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-sra 20931 df-cnfld 21146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |