Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cchhllemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cchhllem 27132 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
cchhllemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
cchhllemOLD.3 | ⊢ 𝑁 ∈ ℕ |
cchhllemOLD.4 | ⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
Ref | Expression |
---|---|
cchhllemOLD | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | cchhllemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | cchhllemOLD.4 | . . . . 5 ⊢ (𝑁 < 5 ∨ 8 < 𝑁) | |
5 | 5lt8 12072 | . . . . . . . . 9 ⊢ 5 < 8 | |
6 | 2 | nnrei 11887 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℝ |
7 | 5re 11965 | . . . . . . . . . 10 ⊢ 5 ∈ ℝ | |
8 | 8re 11974 | . . . . . . . . . 10 ⊢ 8 ∈ ℝ | |
9 | 6, 7, 8 | lttri 11006 | . . . . . . . . 9 ⊢ ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8) |
10 | 5, 9 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 < 5 → 𝑁 < 8) |
11 | 6, 8 | ltnei 11004 | . . . . . . . 8 ⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
13 | 12 | necomd 2999 | . . . . . 6 ⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
14 | 8, 6 | ltnei 11004 | . . . . . 6 ⊢ (8 < 𝑁 → 𝑁 ≠ 8) |
15 | 13, 14 | jaoi 857 | . . . . 5 ⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
16 | 4, 15 | ax-mp 5 | . . . 4 ⊢ 𝑁 ≠ 8 |
17 | 1, 2 | ndxarg 16800 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
18 | ipndx 16941 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 17, 18 | neeq12i 3010 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
20 | 16, 19 | mpbir 234 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
21 | 3, 20 | setsnid 16813 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
22 | eqidd 2740 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
23 | ax-resscn 10834 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
24 | cnfldbas 20489 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
25 | 23, 24 | sseqtri 3954 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
27 | 22, 26, 1, 2, 4 | sralemOLD 20330 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
28 | 27 | mptru 1550 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
29 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
30 | 29 | fveq2i 6756 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
31 | 21, 28, 30 | 3eqtr4i 2777 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1543 ⊤wtru 1544 ∈ wcel 2112 ≠ wne 2943 ⊆ wss 3884 〈cop 4564 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 ∈ cmpo 7254 ℂcc 10775 ℝcr 10776 · cmul 10782 < clt 10915 ℕcn 11878 5c5 11936 8c8 11939 ∗ccj 14710 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 Basecbs 16815 ·𝑖cip 16868 subringAlg csra 20320 ℂfldccnfld 20485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-mulr 16877 df-starv 16878 df-sca 16879 df-vsca 16880 df-ip 16881 df-tset 16882 df-ple 16883 df-ds 16885 df-unif 16886 df-sra 20324 df-cnfld 20486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |