MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cchhllemOLD Structured version   Visualization version   GIF version

Theorem cchhllemOLD 28902
Description: Obsolete version of cchhllem 28901 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cchhl.c 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩)
cchhllemOLD.2 𝐸 = Slot 𝑁
cchhllemOLD.3 𝑁 ∈ ℕ
cchhllemOLD.4 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
cchhllemOLD (𝐸‘ℂfld) = (𝐸𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem cchhllemOLD
StepHypRef Expression
1 cchhllemOLD.2 . . . 4 𝐸 = Slot 𝑁
2 cchhllemOLD.3 . . . 4 𝑁 ∈ ℕ
31, 2ndxid 17234 . . 3 𝐸 = Slot (𝐸‘ndx)
4 cchhllemOLD.4 . . . . 5 (𝑁 < 5 ∨ 8 < 𝑁)
5 5lt8 12460 . . . . . . . . 9 5 < 8
62nnrei 12275 . . . . . . . . . 10 𝑁 ∈ ℝ
7 5re 12353 . . . . . . . . . 10 5 ∈ ℝ
8 8re 12362 . . . . . . . . . 10 8 ∈ ℝ
96, 7, 8lttri 11387 . . . . . . . . 9 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
105, 9mpan2 691 . . . . . . . 8 (𝑁 < 5 → 𝑁 < 8)
116, 8ltnei 11385 . . . . . . . 8 (𝑁 < 8 → 8 ≠ 𝑁)
1210, 11syl 17 . . . . . . 7 (𝑁 < 5 → 8 ≠ 𝑁)
1312necomd 2996 . . . . . 6 (𝑁 < 5 → 𝑁 ≠ 8)
148, 6ltnei 11385 . . . . . 6 (8 < 𝑁𝑁 ≠ 8)
1513, 14jaoi 858 . . . . 5 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
164, 15ax-mp 5 . . . 4 𝑁 ≠ 8
171, 2ndxarg 17233 . . . . 5 (𝐸‘ndx) = 𝑁
18 ipndx 17374 . . . . 5 (·𝑖‘ndx) = 8
1917, 18neeq12i 3007 . . . 4 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
2016, 19mpbir 231 . . 3 (𝐸‘ndx) ≠ (·𝑖‘ndx)
213, 20setsnid 17245 . 2 (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩))
22 eqidd 2738 . . . 4 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
23 ax-resscn 11212 . . . . . 6 ℝ ⊆ ℂ
24 cnfldbas 21368 . . . . . 6 ℂ = (Base‘ℂfld)
2523, 24sseqtri 4032 . . . . 5 ℝ ⊆ (Base‘ℂfld)
2625a1i 11 . . . 4 (⊤ → ℝ ⊆ (Base‘ℂfld))
2722, 26, 1, 2, 4sralemOLD 21176 . . 3 (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)))
2827mptru 1547 . 2 (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))
29 cchhl.c . . 3 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩)
3029fveq2i 6909 . 2 (𝐸𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩))
3121, 28, 303eqtr4i 2775 1 (𝐸‘ℂfld) = (𝐸𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 848   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wss 3951  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  cr 11154   · cmul 11160   < clt 11295  cn 12266  5c5 12324  8c8 12327  ccj 15135   sSet csts 17200  Slot cslot 17218  ndxcnx 17230  Basecbs 17247  ·𝑖cip 17302  subringAlg csra 21170  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-sra 21172  df-cnfld 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator