Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cchhllemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cchhllem 27456 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
cchhllemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
cchhllemOLD.3 | ⊢ 𝑁 ∈ ℕ |
cchhllemOLD.4 | ⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
Ref | Expression |
---|---|
cchhllemOLD | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | cchhllemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16987 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | cchhllemOLD.4 | . . . . 5 ⊢ (𝑁 < 5 ∨ 8 < 𝑁) | |
5 | 5lt8 12260 | . . . . . . . . 9 ⊢ 5 < 8 | |
6 | 2 | nnrei 12075 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℝ |
7 | 5re 12153 | . . . . . . . . . 10 ⊢ 5 ∈ ℝ | |
8 | 8re 12162 | . . . . . . . . . 10 ⊢ 8 ∈ ℝ | |
9 | 6, 7, 8 | lttri 11194 | . . . . . . . . 9 ⊢ ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8) |
10 | 5, 9 | mpan2 688 | . . . . . . . 8 ⊢ (𝑁 < 5 → 𝑁 < 8) |
11 | 6, 8 | ltnei 11192 | . . . . . . . 8 ⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
13 | 12 | necomd 2996 | . . . . . 6 ⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
14 | 8, 6 | ltnei 11192 | . . . . . 6 ⊢ (8 < 𝑁 → 𝑁 ≠ 8) |
15 | 13, 14 | jaoi 854 | . . . . 5 ⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
16 | 4, 15 | ax-mp 5 | . . . 4 ⊢ 𝑁 ≠ 8 |
17 | 1, 2 | ndxarg 16986 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
18 | ipndx 17129 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 17, 18 | neeq12i 3007 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
20 | 16, 19 | mpbir 230 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
21 | 3, 20 | setsnid 16999 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
22 | eqidd 2737 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
23 | ax-resscn 11021 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
24 | cnfldbas 20699 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
25 | 23, 24 | sseqtri 3967 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
27 | 22, 26, 1, 2, 4 | sralemOLD 20538 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
28 | 27 | mptru 1547 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
29 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
30 | 29 | fveq2i 6822 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
31 | 21, 28, 30 | 3eqtr4i 2774 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3897 〈cop 4578 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ∈ cmpo 7331 ℂcc 10962 ℝcr 10963 · cmul 10969 < clt 11102 ℕcn 12066 5c5 12124 8c8 12127 ∗ccj 14898 sSet csts 16953 Slot cslot 16971 ndxcnx 16983 Basecbs 17001 ·𝑖cip 17056 subringAlg csra 20528 ℂfldccnfld 20695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-sra 20532 df-cnfld 20696 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |