MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsfn Structured version   Visualization version   GIF version

Theorem addsfn 27819
Description: Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsfn +s Fn ( No × No )

Proof of Theorem addsfn
Dummy variables 𝑎 𝑙 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-adds 27818 . 2 +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))))
21norec2fn 27814 1 +s Fn ( No × No )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cab 2701  wrex 3062  Vcvv 3466  cun 3939   × cxp 5665   Fn wfn 6529  cfv 6534  (class class class)co 7402  cmpo 7404  1st c1st 7967  2nd c2nd 7968   No csur 27514   |s cscut 27656   L cleft 27713   R cright 27714   +s cadds 27817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-no 27517  df-slt 27518  df-bday 27519  df-sslt 27655  df-scut 27657  df-made 27715  df-old 27716  df-left 27718  df-right 27719  df-norec2 27807  df-adds 27818
This theorem is referenced by:  addsval  27820  addsf  27840
  Copyright terms: Public domain W3C validator