![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsf | Structured version Visualization version GIF version |
Description: Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsf | ⊢ +s :( No × No )⟶ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsfn 27877 | . 2 ⊢ +s Fn ( No × No ) | |
2 | addscl 27897 | . . . 4 ⊢ ((𝑦 ∈ No ∧ 𝑧 ∈ No ) → (𝑦 +s 𝑧) ∈ No ) | |
3 | 2 | rgen2 3194 | . . 3 ⊢ ∀𝑦 ∈ No ∀𝑧 ∈ No (𝑦 +s 𝑧) ∈ No |
4 | fveq2 6897 | . . . . . 6 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ( +s ‘𝑥) = ( +s ‘⟨𝑦, 𝑧⟩)) | |
5 | df-ov 7423 | . . . . . 6 ⊢ (𝑦 +s 𝑧) = ( +s ‘⟨𝑦, 𝑧⟩) | |
6 | 4, 5 | eqtr4di 2786 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ( +s ‘𝑥) = (𝑦 +s 𝑧)) |
7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (( +s ‘𝑥) ∈ No ↔ (𝑦 +s 𝑧) ∈ No )) |
8 | 7 | ralxp 5844 | . . 3 ⊢ (∀𝑥 ∈ ( No × No )( +s ‘𝑥) ∈ No ↔ ∀𝑦 ∈ No ∀𝑧 ∈ No (𝑦 +s 𝑧) ∈ No ) |
9 | 3, 8 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ ( No × No )( +s ‘𝑥) ∈ No |
10 | ffnfv 7129 | . 2 ⊢ ( +s :( No × No )⟶ No ↔ ( +s Fn ( No × No ) ∧ ∀𝑥 ∈ ( No × No )( +s ‘𝑥) ∈ No )) | |
11 | 1, 9, 10 | mpbir2an 710 | 1 ⊢ +s :( No × No )⟶ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3058 ⟨cop 4635 × cxp 5676 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 No csur 27572 +s cadds 27875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-1o 8486 df-2o 8487 df-nadd 8686 df-no 27575 df-slt 27576 df-bday 27577 df-sslt 27713 df-scut 27715 df-0s 27756 df-made 27773 df-old 27774 df-left 27776 df-right 27777 df-norec2 27865 df-adds 27876 |
This theorem is referenced by: addsfo 27899 |
Copyright terms: Public domain | W3C validator |