MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsf Structured version   Visualization version   GIF version

Theorem addsf 27945
Description: Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
addsf +s :( No × No )⟶ No

Proof of Theorem addsf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsfn 27924 . 2 +s Fn ( No × No )
2 addscl 27944 . . . 4 ((𝑦 No 𝑧 No ) → (𝑦 +s 𝑧) ∈ No )
32rgen2 3173 . . 3 𝑦 No 𝑧 No (𝑦 +s 𝑧) ∈ No
4 fveq2 6831 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ( +s𝑥) = ( +s ‘⟨𝑦, 𝑧⟩))
5 df-ov 7358 . . . . . 6 (𝑦 +s 𝑧) = ( +s ‘⟨𝑦, 𝑧⟩)
64, 5eqtr4di 2786 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ( +s𝑥) = (𝑦 +s 𝑧))
76eleq1d 2818 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (( +s𝑥) ∈ No ↔ (𝑦 +s 𝑧) ∈ No ))
87ralxp 5787 . . 3 (∀𝑥 ∈ ( No × No )( +s𝑥) ∈ No ↔ ∀𝑦 No 𝑧 No (𝑦 +s 𝑧) ∈ No )
93, 8mpbir 231 . 2 𝑥 ∈ ( No × No )( +s𝑥) ∈ No
10 ffnfv 7061 . 2 ( +s :( No × No )⟶ No ↔ ( +s Fn ( No × No ) ∧ ∀𝑥 ∈ ( No × No )( +s𝑥) ∈ No ))
111, 9, 10mpbir2an 711 1 +s :( No × No )⟶ No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wral 3048  cop 4583   × cxp 5619   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355   No csur 27598   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sslt 27741  df-scut 27743  df-0s 27788  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec2 27912  df-adds 27923
This theorem is referenced by:  addsfo  27946
  Copyright terms: Public domain W3C validator