Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > addsid1d | Structured version Visualization version GIF version |
Description: Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
Ref | Expression |
---|---|
addsid1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
Ref | Expression |
---|---|
addsid1d | ⊢ (𝜑 → (𝐴 +s 0s ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsid1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | addsid1 34218 | . 2 ⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 +s 0s ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 No csur 26886 0s c0s 34107 +s cadds 34207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-1o 8359 df-2o 8360 df-no 26889 df-slt 26890 df-bday 26891 df-sslt 34067 df-scut 34069 df-0s 34109 df-made 34122 df-old 34123 df-left 34125 df-right 34126 df-norec2 34197 df-adds 34210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |